EST Profiling for Seed-hair Characteristic and Development of EST-SSR and SNP Markers in Carrot

당근 종모 형질 관련 EST profiling과 이를 이용한 EST-SSR 및 SNP 마커 개발

  • Oh, Gyu-Dong (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Hwang, Eun-Mi (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Shim, Eun-Jo (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Jeon, Sang-Jin (Breeding Research Institute, Carrotop Seed Co.) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyung Hee University)
  • 오규동 (경희대학교 원예생명공학과) ;
  • 황은미 (경희대학교 원예생명공학과) ;
  • 심은조 (경희대학교 원예생명공학과) ;
  • 전상진 ((주)캐로톱씨드 육종연구소) ;
  • 박영두 (경희대학교 원예생명공학과)
  • Received : 2010.11.08
  • Accepted : 2010.11.13
  • Published : 2010.12.31

Abstract

Carrot ($Daucus$ $carota$ L. var. $sativa$) is one of the most widely used crops in the world. Moreover it is an important crop because of its high content of ${\beta}$-carotene, well-known as the precursor of vitamin A carotenoid. However, seed-hair which is generated in epidermal cell of seeds inhibits absorption and germination. For that reason, carrot seeds are commercialized after mechanical hair removal process. To overcome such cumbersome weaknesses, new breeding program for developing hairless-seed carrot cultivar has been needed. Therefore, in this study, cDNA libraries from seeds of short-hair seed phenotype CT-ATR615 OP 666-13line and hairy seed CT-ATR615 OP-CK1-9 line were constructed and expression patterns related to generation of seed-hair were analyzed by comparison of EST sequences. Differential EST sequence results between two lines were classified into FunCat functional categories based on the results of BlastX search. Higher expression quantities belonging to metabolic category were shown on short-hair seed line than hairy-seed one. Differential expression quantities between those two lines in the protein folding and stabilization, subcellular localization categories were supposed to contribute variously on the generation of seed-hair. We confirmed 50 and 59 SSR sites, and 2 SNP sites by analyzing EST sequences in two lines; thereafter, we designed SNP and SSR primer sets from these EST sequence information as a molecular marker. These markers are thought to be used in research of molecular markers for classification of carrot family and related to various traits, as well as seed-hair characteristic.

당근($Daucus$ $carota$ L. var. $sativa$)은 세계적으로 널리 이용되는 작물 중 하나이다. 또한 Vitamin A의 전구체인 ${\beta}$-carotene의 함량이 높아 영양적으로도 주요한 작물이다. 하지만 종자 표피세포에서 생성되는 종자모는 종자발아시 흡수를 저해하며 발아를 억제하여 기계적인 제모작업을 거쳐 상품화되고 있다. 이러한 과정에서 발생하는 여러가지 단점을 보완하기 위해 무모종자 당근 품종의 육종이 필요하다. 따라서 본 연구는 단모종자 표현형 CT-ATR615 OP 666-13 개체와 control 유모종자 표현형 CR-ATR615 OP-CK1-9개체의 종자 cDNA library를 작성하여 EST sequence비교를 통해 표현형의 차이에 따라 종자모 형성에 관련하여 발현양상을 비교 분석하였다. BlastX 결과를 바탕으로 개체간 동일한 결과를 제외한 EST sequence를 각각 FunCat 기능별 category로 분류하였다. Metabolism category에서 단모종자 표현형 개체가 오히려 유모종자 표현형 개체보다 높은 발현량을 보이는 것을 확인하였으며, 단모 및 장모종자 개체간의 protein folding and stabilization, subcellular localization category에서 나타난 뚜렷한 발현량 차이는 종자모 형성에 많은 영향을 미치는 것으로 예측되었다. 또한 분석된 EST sequece를 바탕으로 개체별로 각각 50개 및 59개의 SSR site를 확인하였으며, 각각 2개씩의 SNP site를 확인하였다. 이들 SSR 및 SNP site의 primer 작성하여 마커로 개발하였으며, 이를 종자모 형성에 관련된 분자마커 개발에 이용하는 것은 물론 당근의 계통 분류 및 여러가지 형질 관련 분자 마커 연구에 활용 가능할 것으로 기대된다.

Keywords

References

  1. Ayeh, K.O. 2008. Expressed sequence tags (ESTs) and Single nucleotide polymorphisms (SNPs): Emerging molecular marker tools for improving agronomic traits in plant biotechnology. African J. Biotechnol. 7:331-341.
  2. Bajaj, K.L., G. Gurdeep, and B.S. Shkhiuja. 1980. Chemical composition and some plant characteristics in relation to quality of some promising cultivars of carrot (Daucus carota L.). Qual Plant Plant Foods Hum. Nutr. 30:97-107. https://doi.org/10.1007/BF01099047
  3. Ji, S.J., Y.C. Lu, J.X. Feng, G. Wei, J. Li, Y.H. Shi, Q. Fu, D. Liu, J.C. Luo, and Y.X. Zhu. 2003. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res. 31:2534-2543. https://doi.org/10.1093/nar/gkg358
  4. Kantety, R.V., M. La Rota, D.E. Mattews, and M.E. Sorrells. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48:501-510. https://doi.org/10.1023/A:1014875206165
  5. Li, X.R., C.Y. Tu, and I.S. Kim. 1999. Effect of presowing seed treatments on germination and seedling emergence of carrot. Int. of Agr. Sci., Kangwon Univ. 10:10-17.
  6. Lim, J.M., J.L. Cho, S.M. Kang, and J.S. Kang. 2001. Effect of prepriming on inproving germinability of pelleted carrot seeds. Kor. J. Hort. Sci. Technol. 19:511-514.
  7. Menon, A.R.S. and Y. Dave. 1989. Micromorphology of hairs and spines on ovary and fruit of Daucus carota L. var. sativa. Bot. Mag. Tokyo. 102:503-509. https://doi.org/10.1007/BF02488432
  8. Mewes, H.W., C. Amid, R. Arnold, D. Frishman, U. Güldener, G. Mannhaupt, M. Munsterkotter, P. Pagel, N. Strack, V. Stümpflen, J. Warfsmann, and A. Ruepp. 2004. MIPS: Analysis and annotation of proteins from whole genomes. Nucleic Acids Res. 32:D41-D44. https://doi.org/10.1093/nar/gkh092
  9. Min, T.G. 1992. Effect of density separation after pretreatment on embryo growth and radicle emergence of carrot (Daucus carota L.) seeds. Kor. J. Crop. Sci. 37:134-140.
  10. Myakishev, M.V., Y. Khripin, S. Hu, and D.H. Hamer. 2001. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res. 11:163-169. https://doi.org/10.1101/gr.157901
  11. Nieuwhof, M. and F. Garristsen. 1984. Inheritance of spine formation on seeds of carrot (Daucus Carota L.). Euphytica 33:75-80. https://doi.org/10.1007/BF00022752
  12. Park, J.S., I.S. Kim, M.S. Cho, S. Park, and S.G. Park. 2006. Identification of differentially expressed genes involved in spine formation on seeds of Daucus carota L. (carrot), using annealing control primer (ACP) system. J. Plant Biol. 49: 133-140. https://doi.org/10.1007/BF03031009
  13. Ruepp, A., A. Zollner, D. Maier, K. Albermann, J. Hani, M. Molrejs, I. Tetko, U. Guldener, G. Mannhaupt, M. Munsterkotter, and H.W. Mewes. 2004. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res. 32:5539-5545. https://doi.org/10.1093/nar/gkh894
  14. Salzman, R.A., T. Fujita, K. Zhu-salzman, and P.M. Hasegawa. 1999. An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates. Plant Mol. Biol. Rep. 17:11-17. https://doi.org/10.1023/A:1007520314478
  15. Varshney, R.K., R. Sigmund, A. Börner, V. Korzun, N. Stein, M.E. Scorrells, P. Langridge, and A. Graner. 2005. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci. 168:195-202. https://doi.org/10.1016/j.plantsci.2004.08.001
  16. Wang, S., J.W. Wang, N. Yu, C.H. Li, B. Luo, J.Y. Gou, L.J. Wang, and X.Y. Chen. 2004. Control of plant trichome development by a cotton fiber MYB gene. The Plant Cell 16:2323- 2334. https://doi.org/10.1105/tpc.104.024844
  17. Wang, Y.C., C.P. Yang, G.F. Liu, J. Jiang, and J.H. Wu. 2006. Generation and analysis of expressed sequence tags from a cDNA library of Tamarix androssowii. Plant Sci. 170:28-36 https://doi.org/10.1016/j.plantsci.2005.07.027
  18. Ye, S., S. Dhillon, X. Ke, A.R. Collins, and I.N.M. Day. 2001. An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acid Res. 29:e88. https://doi.org/10.1093/nar/29.17.e88
  19. Yu, J.K., M. La Rota, R.V. Kantety, and M.E. Sorrells. EST derived SSR markers for comparative mapping in wheat and rice. Mol. Gen. Genomics 271:742-751.