In this paper, we describe a method for the mobile robot using images of a moving object. This method combines the observed position from dead-reckoning sensors and the estimated position from the images captured by a fixed camera to localize a mobile robot. Using the a priori known path of a moving object in the world coordinates and a perspective camera model, we derive the geometric constraint equations which represent the relation between image frame coordinates for a moving object and the estimated robot`s position. Since the equations are based on the estimated position, the measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot. The Kalman filter scheme is applied to this method. Effectiveness of the proposed method is demonstrated by the simulation.
This paper introduces the development of a range sensor based integrated navigation system for a multi-functional indoor service robot, called PSR (Public Service Robot System). The proposed navigation system includes hardware integration for sensors and actuators, the development of crucial navigation algorithms like mapping, localization, and path planning, and planning scheme such as error/fault handling. Major advantages of the proposed system are as follows: 1) A range sensor based generalized navigation system. 2) No need for the modification of environments. 3) Intelligent navigation-related components. 4) Framework supporting the selection of multiple behaviors and error/fault handling schemes. Experimental results are presented in order to show the feasibility of the proposed navigation system. The result of this research has been successfully applied to our three service robots in a variety of task domains including a delivery, a patrol, a guide, and a floor cleaning task.
This paper presents a foot movement tracking system using ultrasonic sensors and inertial sensors, where the position and velocity of foot are computed using inertial sensors and ultrasonic sensors mounted on a shoe. A foot movement can be estimated using an inertial navigation algorithm only; however, the error tends to increase due to biases of gyroscopes and accelerometers. To reduce the error, a localization system using ultrasonic sensors is additionally used. In the localization system using ultrasonic sensors, the position is continuously calculated in the absolute coordinate. An indirect Kalman filter is used to combine inertial sensors and ultrasonic sensors. Through experiments, it is shown that the proposed system can track a foot movement.
This paper describes real time implementation of subband sound localization system on a floating-point DSP TI TMS320C31. The system determines two dimensional location of an active speaker in a closed room environment with real noise presents. The system consists of an two microphone array connected to TI DSP hosted by PC. The implemented sound localization algorithm is Subband CPSP which is an improved version of traditional CPSP (Cross-Power Spectrum Phase) method. The algorithm first split the input speech signal into arbitrary number of subband using subband filter banks and calculate the CPSP in each subband. It then averages out the CPSP results on each subband and compute a source location estimate. The proposed algorithm has an advantage over CPSP such that it minimize the overall estimation error in source location by limiting the specific band dominant noise to that subband. As a result, it makes possible to set up a robust real time sound localization system. For real time simulation, the input speech is captured using two microphone and digitized by the DSP at sampling rate 8192 hz, 16 bit/sample. The source location is then estimated at once per second to satisfy real-time computational constraints. The performance of the proposed system is confirmed by several real time simulation of the speech at a distance of 1m, 2m, 3m with various speech source locations and it shows over 5% accuracy improvement for the source location estimation.
In this paper, a novel localization algorithm robust to the unmodeled systematic odometry errors is proposed for low-cost non-holonomic mobile robots. It is well known that the most pose estimators using odometry measurements cannot avoid the performance degradation due to the dead-reckoning of systematic odometry errors. As a remedy for this problem, we tty to reflect the wheelbase error in the robot motion model as a parametric uncertainty. Applying the Krein space estimation theory for the discrete-time uncertain nonlinear motion model results in the extended robust Kalman filter. This idea comes from the fact that systematic odometry errors might be regarded as the parametric uncertainties satisfying the sum quadratic constrains (SQCs). The advantage of the proposed methodology is that it has the same recursive structure as the conventional extended Kalman filter, which makes our scheme suitable for real-time applications. Moreover, it guarantees the satisfactoty localization performance even in the presence of wheelbase uncertainty which is hard to model or estimate but often arises from real driving environments. The computer simulations will be given to demonstrate the robustness of the suggested localization algorithm.
Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
Nuclear Engineering and Technology
/
제53권4호
/
pp.1199-1209
/
2021
The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.
To make the autonomous mobile robot move in the unknown space, we have to know the information of current location of the robot. So far, the location information that was obtained using Encoder always includes Dead Reckoning Error, which is accumulated continuously and gets bigger as the distance of movement increases. In this paper, we analyse the effect of the size of the two wheels of the mobile robot and the wheel track of them among the factors of Dead Reckoning Error. And after this, we compensate this Dead Reckoning Error by Kalman filter using Gyro Sensors. To accomplish this, we develop the controller to analyse the error components of Gyro Sensor and to minimize the error values. We employ the numerical approach to analyse the error components by linearizing them because each error component is nonlinear. And we compare the improved result through simulation.
자유 공간에서 음원으로부터 사람의 귀로 음향적인 전단 과정을 표현하는 머리전달함수는 사람이 음원의 위치를 판단할 수 있는 중요한 정보를 포함하고 있으며, 이를 이용하여 실질적으로는 존재하지 않는 음원을 근사적으로 생성할 수 있는 입체 음향 시스템을 구현할 수 있다 그러나 개인의 것이 아닌 일반적인 머리전달함수를 사용함으로 인해 앞뒤 판정 오차, 고도 판정 오차와 같은 음상 정위 능력이 저하된다. 이 논문에서는 머리전달함수의 스펙트럼 놋치(notch) 레벌을 증가시켜 수직면상에서의 앞뒤 판정 오차와 고도 판정 오차를 줄였다. 제안된 방법의 성능을 정지된 음원과 움직이는 음원에 대하여 주관 평가를 통해 증명하였다.
HSDPA, WiBro, 모바일 디바이스 등의 정보통신 기술의 발전으로 사용자가 컴퓨터나 네트워크를 의식하지 않고 언제 어디서나 네트워크에 접속할 수 있는 유비쿼터스 컴퓨팅 환경의 구현이 가능해졌다. 이러한 유비쿼터스 컴퓨팅 환경에서 사용자의 위치에 따른 특정 정보를 제공하는 위치 기반 서비스(Location Based Service, LBS)의 중요성이 대두되고 있다. 본 논문에서는 관성 측정 장치(Inertial Measurement Unit, IMU)의 오차 보정을 위한 필터 및 알고리즘을 소개하고 실내 측위 보정을 위한 매핑 알고리즘을 제안한다. 제안하는 매핑 알고리즘은 지도를 자동으로 인식하여 교차로, 복도, 목적지로 분류하고 현재 위치를 인식하여 잘못된 매핑이 일어나지 않게 하고 사용자의 움직임 이벤트 발생 시 위치 검색의 효율을 높인다. 또한 유동적인 매핑계수를 두어 이동거리와 방향에 대한 오차 보정을 지속적으로 수행한다.
본 논문에서는 평면 형상에 대해 자연스러운 근사화와 효과적인 지역화를 제공하는 새로운 계층적 표현 방법인 MBO-tree를 제안하였다. 곡선 근사화 방법으로 알려진 Douglas-Peucker 알고리즘을 기반으로 곡선 분할점의 근사화 오차를 분할점과 함께 계층적 트리 노드에 저장함으로써 근사화 척도로 활용하였으며, 보다 자연스러운 형상 표현을 위해 오차 조정 알고리즘도 제안하였다. MBO-tree의 오타 조정은 자식 노드의 오차가 부모 노드의 오차보다 크지 않도록 제한하는 것으로 구현하였다. 지역화를 위해서는 MBR(Minimum Bounding Rectangle)을 단순 확장한 MBO(Minimum Bounding Octangle)를 경계 영역으로 사용하였다. MBO는 다른 계층적 표현 체계의 경계 영역들에 비해 대상 객체에 밀착하여 효과적으로 포함할 뿐만 아니라, 계층간 경계 영역 포함 관계도 만족하기 때문에 점 포함 테스트나 형상간 교차 테스트 등과 같은 계층적인 기하학 연산에 매우 유용하다. 실험을 통해서 본 논문에서 제안한 방법이 strip tree, arc tree, HAL tree등과 같은 다른 계층적 표현 체계에 비해 보다 자연스러운 근사화와 효과적인 지역화가 가능함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.