• 제목/요약/키워드: localization error

검색결과 499건 처리시간 0.023초

Adaptive Parameter Estimation Method for Wireless Localization Using RSSI Measurements

  • Cho, Hyun-Hun;Lee, Rak-Hee;Park, Joon-Goo
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.883-887
    • /
    • 2011
  • Location-based service (LBS) is becoming an important part of the information technology (IT) business. Localization is a core technology for LBS because LBS is based on the position of each device or user. In case of outdoor, GPS - which is used to determine the position of a moving user - is the dominant technology. As satellite signal cannot reach indoor, GPS cannot be used in indoor environment. Therefore, research and study about indoor localization technology, which has the same accuracy as an outdoor GPS, is needed for "seamless LBS". For indoor localization, we consider the IEEE802.11 WLAN environment. Generally, received signal strength indicator (RSSI) is used to obtain a specific position of the user under the WLAN environment. RSSI has a characteristic that is decreased over distance. To use RSSI at indoor localization, a mathematical model of RSSI, which reflects its characteristic, is used. However, this RSSI of the mathematical model is different from a real RSSI, which, in reality, has a sensitive parameter that is much affected by the propagation environment. This difference causes the occurrence of localization error. Thus, it is necessary to set a proper RSSI model in order to obtain an accurate localization result. We propose a method in which the parameters of the propagation environment are determined using only RSSI measurements obtained during localization.

실내 환경에서 가시광을 이용한 로봇의 위치 인식 (Positioning of Robot using Visible Light in Indoor Environment)

  • 강인성;민세웅;남해운
    • 로봇학회논문지
    • /
    • 제11권1호
    • /
    • pp.19-25
    • /
    • 2016
  • In this paper, we propose a new method for improving the accuracy of localizing a robot to find the position of a robot in indoor environment. The proposed method uses visible light for indoor localization with a reference receiver to estimate optical power of individual LED in order to reduce localization errors which are caused by aging of LED components and different optical power for each individual LED, etc. We evaluate the performance of the proposed method by comparing it with the performance of traditional model. In several simulations, probability density functions and cumulative distribution functions of localization errors are also obtained. Results indicate that the proposed method is able to reduce localization errors from 7.3 cm to 1.6 cm with a precision of 95%.

Quantization-aware Sensor Selection for Source Localization in Sensor Networks

  • Kim, Yoon-Hak
    • Journal of information and communication convergence engineering
    • /
    • 제9권2호
    • /
    • pp.155-160
    • /
    • 2011
  • In distributed source localization where sensors transmit measurements to a fusion node, we address the sensor selection problem where the goal is to find the best set of sensors that maximizes localization accuracy when quantization of sensor measurements is taken into account. Since sensor selection depends heavily upon rate assigned to each sensor, joint optimization of rate allocation and sensor selection is required to achieve the best solution. We show that this task could be accomplished by solving the problem of allocating rates to each sensor so as to minimize the error in estimating the position of a source. Then we solve this rate allocation problem by using the generalized BFOS algorithm. Our experiments demonstrate that the best set of sensors obtained from the proposed sensor selection algorithm leads to significant improvements in localization performance with respect to the set of sensors determined from a sensor selection process based on unquantized measurements.

Indoor Localization Algorithm using Virtual Access Points in Wi-Fi Environment

  • Labinghisa, Boney;Lee, Dong Myung
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.168-171
    • /
    • 2016
  • In recent years, indoor localization in Wi-Fi environment has been researched for its location determining capability. The fingerprint and RF propagation models has been the main approach in determining indoor positioning. With the use of fingerprint, a low-cost, versatile localization system can be achieved without the use of external hardware. However, only a few research have been made on virtual access points (VAPs) among indoor localization models. In this paper, the idea of indoor localization system using fingerprint with the addition of VAP in Wi-Fi environment is discussed. The idea is to virtually add APs in the existing indoor Wi-Fi system, this would mean additional virtually APs in the network. The experiments of the proposed algorithm shows the positive results when 2VAPs are used compared with only APs. A combination of 3APs and 2VAPs had the lowest average error in all 4 scenarios with 3.99 meters.

센서 융합을 통한 환경지도 기반의 강인한 전역 위치추정 (Robust Global Localization based on Environment map through Sensor Fusion)

  • 정민국;송재복
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.96-103
    • /
    • 2014
  • Global localization is one of the essential issues for mobile robot navigation. In this study, an indoor global localization method is proposed which uses a Kinect sensor and a monocular upward-looking camera. The proposed method generates an environment map which consists of a grid map, a ceiling feature map from the upward-looking camera, and a spatial feature map obtained from the Kinect sensor. The method selects robot pose candidates using the spatial feature map and updates sample poses by particle filter based on the grid map. Localization success is determined by calculating the matching error from the ceiling feature map. In various experiments, the proposed method achieved a position accuracy of 0.12m and a position update speed of 10.4s, which is robust enough for real-world applications.

Real-Time Precision Vehicle Localization Using Numerical Maps

  • Han, Seung-Jun;Choi, Jeongdan
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.968-978
    • /
    • 2014
  • Autonomous vehicle technology based on information technology and software will lead the automotive industry in the near future. Vehicle localization technology is a core expertise geared toward developing autonomous vehicles and will provide location information for control and decision. This paper proposes an effective vision-based localization technology to be applied to autonomous vehicles. In particular, the proposed technology makes use of numerical maps that are widely used in the field of geographic information systems and that have already been built in advance. Optimum vehicle ego-motion estimation and road marking feature extraction techniques are adopted and then combined by an extended Kalman filter and particle filter to make up the localization technology. The implementation results of this paper show remarkable results; namely, an 18 ms mean processing time and 10 cm location error. In addition, autonomous driving and parking are successfully completed with an unmanned vehicle within a $300m{\times}500m$ space.

Pedestrian Navigation System in Mountainous non-GPS Environments

  • Lee, Sungnam
    • Journal of information and communication convergence engineering
    • /
    • 제19권3호
    • /
    • pp.188-197
    • /
    • 2021
  • In military operations, an accurate localization system is required to navigate soldiers to their destinations, even in non-GPS environments. The global positioning system is a commonly used localization method, but it is difficult to maintain the robustness of GPS-based localization against jamming of signals. In addition, GPS-based localization cannot provide important terrain information such as obstacles. With the widespread use of embedded sensors, sensor-based pedestrian tracking schemes have become an attractive option. However, because of noisy sensor readings, pedestrian tracking systems using motion sensors have a major drawback in that errors in the estimated displacement accumulate over time. We present a group-based standalone system that creates terrain maps automatically while also locating soldiers in mountainous terrain. The system estimates landmarks using inertial sensors and utilizes split group information to improve the robustness of map construction. The evaluation shows that our system successfully corrected and combined the drift error of the system localization without infrastructure.

공간좌표로 사상된 GCC 함수를 이용한 음원 위치 추정 방법 (Sound Source Localization Method Using Spatially Mapped GCC Functions)

  • 권병호;박영진;박윤식
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.355-362
    • /
    • 2009
  • Sound source localization method based on the time delay of arrival(TDOA) is applied to many research fields such as a robot auditory system, teleconferencing and so on. When multi-microphones are utilized to localize the source in 3 dimensional space, the conventional localization methods based on TDOA decide the actual source position using the TDOAs from all microphone arrays and the detection measure, which represents the errors between the actual source position and the estimated ones. Performance of these methods usually depends on the number of microphones because it determines the resolution of an estimated position. In this paper, we proposed the localization method using spatially mapped GCC functions. The proposed method does not use just TDOA for localization such as previous ones but it uses spatially mapped GCC functions which is the cross correlation function mapped by an appropriate mapping function over the spatial coordinate. A number of the spatially mapped GCC functions are summed to a single function over the global coordinate and then the actual source position is determined based on the summed GCC function. Performance of the proposed method for the noise effect and estimation resolution is verified with the real environmental experiment. The mean value of estimation error of the proposed method is much smaller than the one based on the conventional ones and the percentage of correct estimation is improved by 30% when the error bound is ${\pm}20^{\circ}$.

수동 RFID 환경에서의 공간/시간 정보를 이용한 이동로봇의 효율적 위치 추정 기법 (Efficient Localization of a Mobile Robot Using Spatial and Temporal Information from Passive RFID Environment)

  • 김성복;이상협
    • 융합신호처리학회논문지
    • /
    • 제9권2호
    • /
    • pp.164-172
    • /
    • 2008
  • 본 논문에서는 수동 RFID 환경에서 획득되는 위치 및 시간 정보를 이용하여, 태그가 배치된 노면을 주행하는 이동로봇의 위치를 효과적으로 추정하는 기법을 제안한다. 본 논문에서 제안된 위치 추정 기법은 기존 연구에 비해 위치 추정 오차를 감소시키고 또한 초기 태그 배치 비용을 감소시키는 효과가 있다. 기본적으로 이동로봇이 일련의 직선 구간을 구간별로 일정한 속도로 주행하며, 또한 매 순간 이동로봇에 의해 감지되는 태그의 수는 한 개 이하라고 가정한다. 첫째, 이미 알려진 지점을 출발하여 정속 직선 주행하는 이동로봇의 속도 및 위치를 추정하는 알고리즘을 개발하는데, 이는 최초를 제외한 여타 구간의 경우에 유효하다. 다음, 최초 구간의 경우 출발 위치를 모르는 상태이므로, 이동로봇이 두 개 이상의 태그를 정속 직선 주행하도록 하여 이동로봇의 속도 및 위치를 추정한다. 마지막으로, 제작된 수동 RFID 위치 추정 시스템을 이용한 실험을 통해 본 논문에서 제안된 이동로봇 위치 추정 기법의 유효성 및 성능을 입증한다.

  • PDF

UWB 시스템에서 Particle Swarm Optimization을 이용하는 향상된 TDoA 무선측위 (An Improved TDoA Localization with Particle Swarm Optimization in UWB Systems)

  • 르나탄;김재운;신요안
    • 한국통신학회논문지
    • /
    • 제35권1C호
    • /
    • pp.87-95
    • /
    • 2010
  • 본 논문에서는 UWB (Ultra Wide Band) 시스템에서 PSO (Particle Swarm Optimization)를 사용하는 향상된 TDoA (Time Difference of Arrival) 무선측위 기법을 제안한다. 제안된 기법은 TDoA 파라미터 재추정과 태그(Tag) 위치 재측정을 수행하는 두 단계로 구성된다. 이들 두 단계에서 PSO 알고리즘은 무선측위 성능 향상을 위해 고용된다. 첫 번째 단계에서 TDoA 추정 오차를 줄이기 위해, 제안된 기법은 전형적인 TDoA 무선측위 방식으로부터 얻어진 TDoA 파라미터를 재추정한다. 두 번째 단계에서 무선측위 오차를 최소화시키기 위해, 첫 번째 단계에서 추정된 TDoA 파라미터를 가지고 제안된 기법은 태그의 위치를 다시 측정한다. 모의실험 결과, 제안된 기법은 LoS (Line-of-Sight)와 NLoS (Non-Line-of-Sight) 채널 환경에서 모두 전형적인 TDoA 무선측위 방식에 비해 우수한 무선측위 성능을 달성하는 것을 확인할 수 있었다.