• 제목/요약/키워드: localization algorithms

검색결과 217건 처리시간 0.024초

벤치마크 태그를 이용한 도착시간 차 기반의 RFID 측위 알고리즘 (TDOA-Based Localization Algorithms for RFID Systems Using Benchmark Tags)

  • 주운기
    • 경영과학
    • /
    • 제29권3호
    • /
    • pp.1-11
    • /
    • 2012
  • This paper considers a localization problem in time difference of arrival (TDOA)-based radio frequency identification (RFID) systems. To estimate the position of a target tag, this paper suggests three localization algorithms that use benchmark tags. The benchmark tags are the same type as the target tag, but either the locations or distance of the benchmark tags are known. Two algorithms use the benchmarks for auxiliary information to improve the estimation accuracy of the other localization algorithms such as least squared estimator (LSE). The other one utilizes the benchmarks as essential tags to estimate the location. Numerical tests show that the localization accuracy can be improved by using benchmark tags especially when an algorithm using the LSE is applied to the localization problem. Furthermore, this paper shows that our benchmark algorithm is valuable when the measurement noise is large.

Probabilistic localization of the service robot by mapmatching algorithm

  • Lee, Dong-Heui;Woojin Chung;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.92.3-92
    • /
    • 2002
  • A lot of localization algorithms have been developed in order to achieve autonomous navigation. However, most of localization algorithms are restricted to certain conditions. In this paper, Monte Carlo localization scheme with a map-matching algorithm is suggested as a robust localization method for the Public Service Robot to accomplish its tasks autonomously. Monte Carlo localization can be applied to local, global and kidnapping localization problems. A range image based measure function and a geometric pattern matching measure function are applied for map matching algorithm. This map matching method can be applied to both polygonal environments and un-polygonal environments and achieves...

  • PDF

RFID 시스템에서 이동체의 위치 추적을 위한 알고리즘 (Algorithms for Localization of a Moving Target in RFID Systems)

  • 주운기
    • 산업공학
    • /
    • 제23권3호
    • /
    • pp.239-245
    • /
    • 2010
  • This paper considers a localization problem of a moving tag on RFID(Radio Frequency Identification) systems, where a positioning engine collects TDOA(Time-difference of Arrival) signal from a target tag to estimate the position of the tag. To localize the tag in the RFID system, we develop two heuristic algorithms and evaluate their performance in the estimation error and computational time by using randomly generated numerical examples. Based upon the performance evaluation, we can conclude our algorithms are valuable for localization the moving target.

Error Estimation Method for Matrix Correlation-Based Wi-Fi Indoor Localization

  • Sun, Yong-Liang;Xu, Yu-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2657-2675
    • /
    • 2013
  • A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.

Incremental Strategy-based Residual Regression Networks for Node Localization in Wireless Sensor Networks

  • Zou, Dongyao;Sun, Guohao;Li, Zhigang;Xi, Guangyong;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2627-2647
    • /
    • 2022
  • The easy scalability and low cost of range-free localization algorithms have led to their wide attention and application in node localization of wireless sensor networks. However, the existing range-free localization algorithms still have problems, such as large cumulative errors and poor localization performance. To solve these problems, an incremental strategy-based residual regression network is proposed for node localization in wireless sensor networks. The algorithm predicts the coordinates of the nodes to be solved by building a deep learning model and fine-tunes the prediction results by regression based on the intersection of the communication range between the predicted and real coordinates and the loss function, which improves the localization performance of the algorithm. Moreover, a correction scheme is proposed to correct the augmented data in the incremental strategy, which reduces the cumulative error generated during the algorithm localization. The analysis through simulation experiments demonstrates that our proposed algorithm has strong robustness and has obvious advantages in localization performance compared with other algorithms.

A Collaborative and Predictive Localization Algorithm for Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3480-3500
    • /
    • 2017
  • Accurate locating for the mobile target remains a challenge in various applications of wireless sensor networks (WSNs). Unfortunately, most of the typical localization algorithms perform well only in the WSN with densely distributed sensor nodes. The non-localizable problem is prone to happening when a target moves into the WSN with sparsely distributed sensor nodes. To solve this problem, we propose a collaborative and predictive localization algorithm (CPLA). The Gaussian mixture model (GMM) is introduced to predict the posterior trajectory for a mobile target by training its prior trajectory. In addition, the collaborative and predictive schemes are designed to solve the non-localizable problems in the two-anchor nodes locating, one-anchor node locating and non-anchor node locating situations. Simulation results prove that the CPLA exhibits higher localization accuracy than other tested predictive localization algorithms either in the WSN with sparsely distributed sensor nodes or in the WSN with densely distributed sensor nodes.

무선 센서 네트워크에서의 2단계 위치 추정 알고리즘 (Two-Phase Localization Algorithm in Wireless Sensor Networks)

  • 송하주;김숙연;권오흠
    • 한국멀티미디어학회논문지
    • /
    • 제9권2호
    • /
    • pp.172-188
    • /
    • 2006
  • 본 논문은 무선 센서 네트워크(wireless sensor network)에서 노드들의 위치 추정 문제를 다룬다. 위치 추정을 위한 기존의 기법들은 인접한 노드들 간의 거리를 이용하여 자신의 위치를 추정하는 LGB 기법과 멀리 떨어진 노드들 간의 거리를 추정하여 위치 추정에 이용하는 GGB 기법으로 분류할 수 있다. 그러나 LGB 기법의 경우 상대적으로 정확도가 낮은 거리 측정 기법 하에서는 적합하지 않은 면이 있고, 반면 GGB 기법의 경우 장애물이 있거나 혹은 노드들이 분포한 영역이 사각형이나 원형과 같은 정형이 아닌 경우에는 적용하기 어려운 면이 있다. 본 논문에서는 두 가지 기법을 절충하여 부정확한 거리 측정 기법 하에서 장애물이 있거나 비정형의 영역 내에 분포한 노드들에 대해서도 위치 추정을 가능하게 하는 새로운 위치 추정 알고리즘을 제안하고, 그 성능을 모의실험을 통해서 비교 분석한다.

  • PDF

Analysis of Bluetooth Indoor Localization Technologies and Experiemnt of Correlation between RSSI and Distance

  • Kim, Yang-Su;Jang, Beakcheol
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권10호
    • /
    • pp.55-62
    • /
    • 2016
  • In this paper, we present indoor localization technologies using the bluetooth signal categorizing them into proximity based, triangulation based and fingerprinting based technologies. Then we provide localization accuracy improvement algorithms such as moving average, K-means, particle filter, and K-Nearest neighbor algorithms. We define important performance issues for indoor localization technologies and analyze recent technologies according to the performance issues. Finally we provide experimental results for correlation between RSSI and distance. We believe that this paper provide wise view and necessary information for recent localization technologies using the bluetooth signal.

병렬 학습 모듈을 통한 자율무인잠수정의 강인한 위치 추정 (Robust AUV Localization Incorporating Parallel Learning Module)

  • 이권수;이필엽;김호성;이한솔;강형주;이지홍
    • 로봇학회논문지
    • /
    • 제16권4호
    • /
    • pp.306-312
    • /
    • 2021
  • This paper describes localization of autonomous underwater vehicles(AUV), which can be used when some navigation sensor data are an outlier. In that situation, localization through existing navigation algorithms causes problems in long-range localization. Even if an outlier sensor data occurs once, problems of localization will continue. Also, if outlier sensor data is related to azimuth (direction of AUV), it causes bigger problems. Therefore, a parallel localization module, in which different algorithms are performed in a normal and abnormal situation should be designed. Before designing a parallel localization module, it is necessary to study an effective method in the abnormal situation. So, we propose a localization method through machine learning. For this method, a learning model consists of only Fully-Connected and trains through randomly contaminated real sea data. The ground truth of training is displacement between subsequent GPS data. As a result, average error in localization through the learning model is 0.4 times smaller than the average error in localization through the existing navigation algorithm. Through this result, we conclude that it is suitable for a component of the parallel localization module.