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Abstract 

 
The easy scalability and low cost of range-free localization algorithms have led to their wide 
attention and application in node localization of wireless sensor networks. However, the 
existing range-free localization algorithms still have problems, such as large cumulative errors 
and poor localization performance. To solve these problems, an incremental strategy-based 
residual regression network is proposed for node localization in wireless sensor networks. The 
algorithm predicts the coordinates of the nodes to be solved by building a deep learning model 
and fine-tunes the prediction results by regression based on the intersection of the 
communication range between the predicted and real coordinates and the loss function, which 
improves the localization performance of the algorithm. Moreover, a correction scheme is 
proposed to correct the augmented data in the incremental strategy, which reduces the 
cumulative error generated during the algorithm localization. The analysis through simulation 
experiments demonstrates that our proposed algorithm has strong robustness and has obvious 
advantages in localization performance compared with other algorithms. 
 
 
Keywords: Wireless Sensor Networks (WSNs); Convolutional Neural Networks (CNN); 
Data Augmentation; Node Localization; Degree of intersection. 
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1. Introduction 

Location information plays a pivotal part in sensor node applications. With the mature 
development of Artificial Intelligence (AI) and the popularity of the application of the Internet 
of Things, Wireless Sensor Networks (WSNs) as an essential way to sense external 
information have become a development trend of IoT and its applications [1]. WSNs as a 
distributed sensor network, by arranging it in a specific scenario, its sensor nodes can 
continuously perform a series of operations such as information collection and location 
monitoring, etc. [2,3]. At present, WSNs are widely used in various fields: industrial control, 
smart homes, military security, environmental monitoring, fine agriculture, etc. In these 
applications, sensor nodes must specify their location to detail “what is happening where” and 
thus achieve subsequent information processing [4,5]. 

However, in practical applications, sensor nodes are affected by their factors and 
environmental factors in the localization process, triggering problems such as limited network 
connectivity between nodes and hindered localization. Therefore, an efficient and energy-
saving localization algorithm has gradually become the focus of research. There are two types 
of localization algorithms commonly used in WSNs: range-based and range-free [6]. Range-
based node localization algorithms include angle of arrival (AOA) [7], time of arrival (TOA) 
[8], time difference of arrival (TDOA) [9], and methods based on received signal strength 
indication (RSSI) [10], etc.  However, the range-based node localization algorithms require 
high hardware requirements and are susceptible to interference from external environmental 
factors in practical applications. So, range-free algorithms are now getting more attention. 
Range-free algorithms have the benefits of simple implementation and low hardware 
requirements, but these classical algorithms have the problem of high localization errors in 
practical applications [11]. This has been extensively researched and improved by scholars 
both nationally and internationally. 

Currently, the most used range-free algorithms are still improved by using intelligent 
optimization algorithms based on the DV-Hop algorithm [12]. Reference [13] proposed a 
localization algorithm using time difference of arrival and frequency difference measurements 
of arrival. The introduction of free gradient effectively solves the problem that the Cuckoo 
search algorithm converges slowly and tends to fall into local optimality and further improves 
the localization accuracy. Reference [14] improved the DV-Hop by introducing the particle 
swarm optimization (PSO) to convert the node localization problem into a particle search 
problem and analyzed the localization performance of the optimized algorithm under different 
network expansion structures. Reference [15] proposed a WND-DV-Hop algorithm by 
constructing a weighting factor based on the beacon node hop counts, and the least squares 
method was used to correct hop counts between nodes. Reference [16] proposed a method to 
correct the average hops error in the DV-Hop using RSSI. The main idea is to optimize the 
algorithm by establishing the channel fading model of RSSI signal and polynomial 
approximation estimation, and then finally reduce the error by recursive calculation. But this 
algorithm is highly susceptible to environmental factors in practical scenarios. Reference [17] 
presents an improved regularized least-squares DV-HOP algorithm by combining double least 
squares with a statistical filtering optimization strategy, which effectively reduces the errors 
generated in the algorithm localization process. Reference [18] proposed a new range-free 
iterative localization algorithm. The non-convex problem in node localization is transformed 
into a convex optimization problem by matrix transformation and first-order Taylor expansion. 
Finally, the iterative successive approximation is used to improve the final localization 
accuracy of the algorithm and effectively solve the node localization problem in complex 
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scenes. 
Recently, many scholars have also started to use mobile nodes to solve the node localization 

problem. Reference [19] proposed a localization algorithm based on mobile anchor nodes 
(ANs) that allows them to fly in a C-shaped path in the 3D network. The coordinates of the 
unknown nodes (UNs) are calculated by obtaining the RSSI values between the mobile anchor 
node (AN) and the unknown node (UN) to establish the distance matrix between them. It can 
still maintain good localization performance in the presence of multipath fading of the signal. 
Reference [20] proposed a project to solve the localization of target nodes in the region by 
moving ANs. The localization accuracy is improved by selecting suitable ANs and allowing 
them to move irregularly in the region. Finally, the data are particle filtered for distributed 
localization optimal estimation. Reference [21] proposed a mobile node localization algorithm 
based on 3DWSN. By improving the Savarese algorithm, the 3D location is effectively 
acquired in the local localization phase. In addition, the algorithm eliminates the node 
singularity problem and improves the localization accuracy. 

However, most of these algorithms first obtain the estimated distance between nodes by 
some methods and then perform node finding by artificial intelligence algorithms. There is a 
large cumulative error during the operation of the algorithms, which affects the final 
positioning accuracy. In addition, the localization algorithms using mobile nodes, although 
improved in localization accuracy, are not applicable to all application scenarios for scalability 
and cost reasons. Accordingly, we try to find a new effective localization scheme to solve 
these problems. Inspired by convolutional neural networks (CNN) in image applications [22], 
we apply them to WSNs to solve the node localization problem. CNN have excellent feature 
extraction ability and adaptability, can make a prediction of the coordinates of UNs based on 
the information of known nodes, which is very suitable for the node localization problem. So 
in this paper, we consider the node localization problem as a kind of regression problem with 
a feature dataset to predict the node location. 

In summary, in this paper, we propose an incremental strategy-based residual regression 
network [23] for node localization in wireless sensor networks, which effectively reduces the 
cumulative error generated during the algorithm and improves the localization accuracy. The 
main contributions are: 
• CNN is applied to the node localization problem of WSNs and designed a node 

localization prediction model based on residual regression. The regression fine-tuning of 
the prediction results based on the intersection of the predicted coordinates of the AN and 
the communication range of the real coordinates in the model, together with the loss 
function, greatly improves the positioning accuracy of the algorithm. 

• An incremental strategy is proposed to augment the training data set, which better meets 
the training data set requirements of the model and guarantees the localization prediction 
accuracy of the model. 

• A correction scheme is proposed. The correction coefficients are constructed to correct 
the augmented data based on the data information between nodes in a small area. This 
scheme reduces the cumulative error generated during the operation of the algorithm 
and better reflects the network characteristics of the node distribution area. 

2. Related Work 
We can commonly understand the node localization problem in WSNs as follows: Randomly 
deploy sensor nodes in an area, and the nodes can communicate with each other through 
neighboring nodes within their communication range only a few nodes (ANs) have known 
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location information now, and an algorithm model needs to be built to get the coordinates of 
the remaining sensor nodes (UNs) in the region according to the information of the known 
ANs. Therefore, how well the algorithm model is built can directly affect the final localization 
results. The widely used range-free localization schemes are either improved by using the 
Distance vector routing algorithm (DV) [24] or by estimating the location coordinates of UNs 
by building RSSI fading models, but all these algorithms inevitably have some problems due 
to their characteristics. 

The DV-Hop is used to measure the distance between sensor nodes based on the DV routing 
protocol. Its main idea is to consider each node as a router, and pass information (information 
including the best output path and distance-vector, etc.) between neighboring router nodes. 
Every once in a while, the router will send its information table to all neighboring nodes to 
reach each target node, thus ensuring that all router nodes save the best path to any node. Then, 
calculate the coordinates of the UN. However, by locating based on the data information 
between routing nodes, there will inevitably be large locating errors. Therefore, many scholars 
have also improved on this basis to achieve satisfactory results. 

To solve the problems of large cumulative errors and poor localization performance of 
range-free algorithms, we also try to find an efficient and low-cost solution to be applied to 
node localization in other fields. The development of AI and big data [25] has also focused 
more attention on deep learning related fields. Convolutional neural networks [26], with their 
excellent feature extraction capability and adaptability, have also started to be gradually 
applied to the node localization problem in WSNs. Unlike other localization algorithms, deep 
learning treats the node localization of sensors as a regression problem. The global UNs are 
predicted by feature extraction of data information of known nodes for localization. Reference 
[27] proposed a deep neural network-based sensor localization scheme. The optimal 
relationship existing between RSSI, and deployment nodes are predicted by constructing a 
deep neural network model. And for the sensor data loss problem, a method is proposed to 
reconstruct the lost data to achieve accurate localization. Reference [28] addresses the situation 
of node localization bias that exists in anisotropic networks. A distance estimation correction 
scheme for range-free algorithms constructed using neural networks is proposed to optimize 
the signal attenuation situation existing in anisotropic networks and further improve the 
localization performance in complex scenes is further improved. Reference [29] proposed a 
prediction algorithm using the stacked autoencoder model, and the model is trained with data 
between nodes. The superiority of this method is verified through simulation and analysis of 
different types of networks. Reference [30] established a deep learning model of denoising 
Auto-Encoder and trained the model by extracting fingerprint information from the RSSI to 
build a fingerprint database in 3D space. The experimental analysis demonstrated the good 
localization performance of the algorithm in both horizontal and vertical directions. 

So in this paper, we propose a new algorithm that applies CNN to node localization. In this 
algorithm, we let the established model learn the relationship between the distance and the 
number of hops between nodes, and the prediction results are fine-tuned based on the 
intersection of the predicted coordinates of the AN with the communication range of the real 
coordinates, together with the loss function to improve the localization accuracy of the 
algorithm. In addition, we also propose an incremental strategy to augment the training dataset 
required by the model, which maximizes the training dataset requirement of the model. To 
ensure the accuracy of the augmented data, we propose a correction scheme to correct it, which 
reduces the cumulative error brought by it and thus improves the localization prediction 
performance of the model. 
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3. Incremental strategy-based residual regression networks 
In summary, we propose an incremental strategy-based residual regression network for node 
localization in WSNs in this paper. This section describes this algorithm process in detail, 
which is divided into three stages: incremental acquisition of data information between nodes 
(training data set), training of the residual regression network model, and node localization. 
The global procedure of the algorithm is shown in Fig. 1. 

Data augmentation Localization Model
Convolution Degree of intersection Localization

 
Fig. 1. Global procedure of the algorithm 

3.1 Incremental strategy 
Expanding the dataset required for model training is the most important purpose of the 
incremental strategy. The basic idea is to solve for the UN within their communication range 
using the information of the ANs according to the distribution state of the nodes in WSNs, to 
acquire the data between the nodes within the communication range. The advantage of this is 
that according to the local network characteristics in the area where the ANs are located, the 
cumulative error generated in the incremental process can be minimized, and the cumulative 
error generated in the positioning process of the network model designed in this paper can be 
reduced. 

Assume that the amount of 𝑛𝑛 nodes are stochastic distribution in a region denoted by set 
 ; where the amount of ANs is 𝑚𝑚, denoted by set  ; the coordinates of ANs 𝑎𝑎𝑠𝑠,𝑎𝑎𝑔𝑔  are 
(𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠), (𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔); the amount of UNs is 𝑛𝑛 −𝑚𝑚, denoted by set   ; the coordinates of UN 𝑢𝑢𝑘𝑘 
are (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘); then for the sensor nodes in the region there are the following relations: 
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After the deployment of sensor nodes in the region, the ANs firstly release their data 
message (including ANs identification, ANs location coordinates, and hop count) to the UNs 
in their communication range. Table 1 represents the structural composition of the data 
message. If UNs receive the data message for the first time, it records this data message and 
adds 1 to the hop count (the initial hop count of the node is 0), and then continues to forward 
this data message to its neighboring nodes. If the UNs are not receiving the data message for 
the first time, it compares the previously saved data message with the minimum number of 
hops recorded in the currently received data message, selects the smaller hop count 
information to be saved, and continues to forward this data information to its neighboring 
nodes. According to the above steps, the ANs can obtain the distance data from other ANs by 
calculation, send this data message to the UNs in the region again in the form of broadcast, 
and get the data message between nodes in the whole region. 
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Table 1. Structural composition of the data message 

Nodes identification Average hop distance Location 
coordinates 

Minimum number of 
hops (initialized to 0) 

𝐼𝐼𝐼𝐼 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (𝑥𝑥, 𝑦𝑦) ℎ𝑜𝑜𝑜𝑜 

The incremental strategy proposed is to get the data message between nodes in a small 
range. We need to find the UNs (data augmentation nodes) with the hop count of one in the 
saved data message and save this part of UNs into the set 𝑻𝑻. The discriminatory conditions 
are as follows: 

( )( ){ }1 min =1 , 1, ,T m k nu hop s m+ ≤ ≤= ∧ =   (2) 
The pseudo-code for saving the data augmentation nodes in the set   to the set 𝑻𝑻  is 

shown in Algorithm 1.  . (𝑗𝑗)  represents the element 𝑗𝑗  of the set  ;  .ℎ𝑜𝑜𝑜𝑜(𝑗𝑗)  denotes 
obtaining the hop count information saved by the element 𝑗𝑗 in the set  . 

Algorithm 1 Identify data augmentation nodes 

Input：The set   of unknown nodes, number of elements 𝑛𝑛 − 𝑚𝑚 
Output：The set 𝑻𝑻 of data augmentation nodes 
1. 
2. 
3. 
4. 
5. 

Begin 
for 𝑗𝑗 = 0; 𝑗𝑗 ≤ 𝑛𝑛 −𝑚𝑚; 𝑗𝑗 + + do 
   if  . ℎ𝑜𝑜𝑜𝑜(𝑗𝑗) == 1 do 
         𝑻𝑻 =  . (𝑗𝑗) 
end; 

As shown in Fig. 2, the dataset expansion is divided into three key components: first, the 
UNs within their communication range are identified and selected according to the location of 
ANs; after that, correction coefficients are introduced to correct hop counts between nodes; 
finally, the data information between nodes is obtained by solving. 

 
Fig. 2. Data augmentation process 
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3.1.1 Information acquisition of data augmentation nodes 
In summary, we have identified the data augmentation nodes and stored them in the set 𝑻𝑻. 
We assume that 𝑢𝑢𝑘𝑘 is the data augmentation node element in the set 𝑻𝑻. The set of ANs is 
known to be  = �𝑎𝑎1,⋯ ,𝑎𝑎𝑠𝑠,⋯ ,𝑎𝑎𝑔𝑔,⋯ ,𝑎𝑎𝑚𝑚�, which contains ANs 𝑎𝑎𝑠𝑠,𝑎𝑎𝑔𝑔  with coordinates 
(𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠), (𝑥𝑥𝑔𝑔,𝑦𝑦𝑔𝑔), and actual hop count between 𝑎𝑎𝑠𝑠  and 𝑎𝑎𝑔𝑔  is denoted by ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 . However, 
solving the information of data augmentation nodes directly by distance vector routing 
algorithm will produce a large error, so here we propose a correction scheme for the minimum 
number of hops among nodes in a small range. The ratio of the true distance 𝑑𝑑𝑠𝑠𝑠𝑠 among ANs 
with the communication radius 𝑅𝑅 is defined as the ideal minimum hop count 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠. Moreover, 
the nodes solved in a small area are used as the model training data set, which well reflects the 
network characteristics of the area they are in and reduces the cumulative error in the model 
training process. 

( ) ( )2 2

sg s g s gd x x y y= − + −  (3) 

sg
sg

d
IH

R
=  (4) 

Based on the actual and ideal hop counts ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 , 𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠 between ANs, their relative errors 
are defined as the hop deviation factor 𝜑𝜑𝑠𝑠𝑠𝑠. 

sg sg
sg

sg

hop IH
hop

ϕ
−

=  (5) 

Based on the hop count deviation factor 𝜑𝜑𝑠𝑠𝑠𝑠, the hop correction factor can be defined as 
𝛽𝛽𝑠𝑠𝑠𝑠 . (As shown in Fig. 3). Through extensive experimental analysis, it is shown that the 
correction effect is best when 𝑛𝑛 = 2. 

1 n
sg sgβ ϕ= −  (6) 

 
Fig. 3. Errors with different correction factors 

We classify the hop count correction between nodes into three cases: 
1) The hop count correction between ANs 𝑎𝑎𝑠𝑠,𝑎𝑎𝑔𝑔. As shown in (7), the corrected hop count 

is defined as 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 based directly on the correction factor 𝛽𝛽𝑠𝑠𝑠𝑠. 

5 10 15 20 25 30 35

Percentage of anchor nodes(%)

10

15

20

25

30

35

40

R
M

SE
(%

)

n=1

n=2

n=3

n=4



2634                                                                                  Zou et al.: Incremental Strategy-based Residual Regression 
Networks for Node Localization in Wireless Sensor Networks 

sg sg sgCH hopβ= ×  (7) 
2) Hop count correction between the UN 𝑢𝑢𝑘𝑘 and its nearest AN 𝑎𝑎𝑠𝑠. We use the average 

value of the correction coefficient between ANs to correct the hop count between the UN and 
its neighboring ANs. The average calculation can take full advantage of the hop count of the 
AN to better indicate the node distribution properties of the region where the UN is located, 
and the minimum hop count after correction is defined as 𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘. 

1

m

sg
s g

ks ksCH hop
m

β
≠= ×
−

∑
 (8) 

3) Hop count correction between UN 𝑢𝑢𝑘𝑘 and other AN 𝑎𝑎𝑔𝑔. In most cases, the paths between 
nodes in a small area overlap, so the correction coefficient between ANs is used directly to 
reflect the degree of deviation of the hop count between nodes better. As shown in (9), the 
corrected hop count is defined as 𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 based on the calculation of the correction coefficient 
𝛽𝛽𝑠𝑠𝑠𝑠. 

kg sg kgCH hopβ= ×  (9) 
The average hop distance 𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼 between ANs in the region can be calculated by using 

(10). 
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The augmented node 𝑢𝑢𝑘𝑘 acquires the estimated distance 𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘,𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘 from the ANs 𝑎𝑎𝑠𝑠, 𝑎𝑎𝑔𝑔 
based on its stored data information using (11) and (12). 

ks I ksEd AHopsize CH= ×  (11) 

kg I kgEd AHopsize CH= ×  (12) 

3.1.2 Data Collection 
Through the above steps, after completing the solution of the augmented nodes, the corrected 
hop count information between these data augmented nodes and ANs need to be saved into 
the vector as the training data for the model designed in this paper. For example, assume that 
𝑢𝑢𝑘𝑘 ,𝑘𝑘 = 𝑚𝑚 + 1,⋯ ,𝑚𝑚 + 𝑗𝑗 is an element in the set 𝑻𝑻 of data augmentation nodes; then the hop 
count vector of 𝑢𝑢𝑘𝑘  can be denoted as 𝑪𝑪𝑪𝑪𝑘𝑘 = {𝐶𝐶𝐶𝐶𝑘𝑘1,⋯ ,𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘,⋯ ,𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚} , where 𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘  is 
defined as the hop count between the data augmentation node 𝑢𝑢𝑘𝑘 and the AN 𝑎𝑎𝑠𝑠 obtained after 
correction, and the vector of hops between the AN 𝑎𝑎𝑠𝑠 and other ANs can be denoted as 𝑪𝑪𝑪𝑪𝑠𝑠 =
�𝐶𝐶𝐶𝐶𝑠𝑠1,⋯ ,𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠,⋯ ,𝐶𝐶𝐶𝐶𝑠𝑠𝑚𝑚�, and 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 is defined as the hop count between the AN 𝑎𝑎𝑠𝑠 and 𝑎𝑎𝑔𝑔 
obtained after correction, and it should be noted that the AN with its own hop count 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠 = 0. 
In addition, the distance vector between them is 𝑬𝑬𝑬𝑬𝑘𝑘 = {𝐸𝐸𝐸𝐸𝑘𝑘1,⋯ ,𝐸𝐸𝐸𝐸𝑘𝑘𝑘𝑘,⋯ ,𝐸𝐸𝐸𝐸𝑘𝑘𝑚𝑚} . The 
actual distance vector between the ANs is 𝒅𝒅𝑠𝑠 = �𝑑𝑑𝑠𝑠1,⋯ ,𝑑𝑑𝑠𝑠𝑠𝑠 ,⋯ , 𝑑𝑑𝑠𝑠𝑚𝑚�. It should be noted that 
𝑑𝑑𝑠𝑠𝑠𝑠 = 0. 

The data information 𝑪𝑪𝑯𝑯 and 𝑬𝑬𝒅𝒅,𝒅𝒅 of all nodes described above will be used as the initial 
data set (training and validation set) for training the model designed in this paper. 
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3.2 Residual regression prediction model for node localization in WSNs 

3.2.1 Process of node localization prediction model 
According to the calculation of the above formula, a prediction model of accurate localization 
of sensor network nodes based on residual regression is designed in this paper. 

 
Fig. 4. Process of node localization prediction model 

In this model, we first designed a weighting factor 𝑤𝑤𝑓𝑓  to weight the AN samples and 
augmented node samples in the initial data set according to the node identifiers in the data 
samples, and the definition of 𝑤𝑤𝑓𝑓 is shown in (13): 
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Where 𝑎𝑎𝑠𝑠 is the AN; 𝑢𝑢𝑘𝑘 is the augmentation node;  denotes the data set of initial ANs and 
𝑚𝑚 denotes the amount of initial ANs; 𝑻𝑻 is the set of augmentation nodes and 𝑗𝑗 denotes the 
amount of augmentation nodes. 

After weighting the dataset, we used two convolution operators [31] to perform feature 
extraction on the input dataset to obtain the distribution characteristics of the space in which 
the nodes are located through feature acquisition; According to the regression properties of the 
localization model, we set the activation function Softplus [32], Softplus can better improve 
the nonlinear characteristics of the model and further enhance the robustness of the model 
compared with other activation functions; And the initial data set is fused with the extracted 
feature information by adding jump connections [33] to prevent problems such as data 
information loss during the convolution process; after that, the feature extraction is performed 
again by convolution on the output of the previous stage to further learn the mapping 
relationship between hop count and distance; and a concept based on the intersection of the 
predicted coordinate communication range of the AN with the actual coordinate 
communication range is proposed as residual compensation, which compensates for the 
information loss existing in the training process and further improves the localization 
prediction capability of the model. 

3.2.2 Training 
Pre-training and fine-tuning are the two main stages of the training process of the node 
localization prediction model for WSNs. 

The pre-training stages perform feature extraction and optimization of the model 
parameters according to the information of the input data. Taking the hop counts as an example, 
suppose there exists a data set 𝑪𝑪𝑪𝑪𝑢𝑢 = {𝐶𝐶𝐶𝐶𝑘𝑘1,⋯ ,𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘,⋯ ,𝐶𝐶𝐶𝐶𝑘𝑘𝑚𝑚} with data volume 𝑚𝑚. The 
convolutional layer, for input 𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 ∈ 𝑪𝑪𝑪𝑪𝑢𝑢, the feature extraction process can be expressed as: 
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( )f ksf w CH= ⋅ +ks c cY w b  (14) 
( ) ( ) ( )log 1 ksCH

ks ksf CH Csoftplus eH = +=  (15) 
where 𝒘𝒘𝒄𝒄 denotes the weight coefficient matrix in the feature extraction process, 𝒃𝒃𝒄𝒄 denotes 
the bias vector, 𝒀𝒀𝒌𝒌𝒌𝒌  denotes the new vector obtained after convolution on 𝐶𝐶𝐶𝐶𝑘𝑘𝑘𝑘 , and 𝑓𝑓(∙) 
denotes the activation function in the model. 

In addition, we also assign a loss function 𝐿𝐿�𝑪𝑪𝑪𝑪𝑢𝑢,𝑪𝑪𝑯𝑯�𝑢𝑢� in the model to measure the 
strengths and weaknesses of the localization prediction model to ensure that the parameters 𝜶𝜶 
in the model are optimal. 
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where 𝑪𝑪𝑯𝑯�𝒖𝒖 denotes the output of the convolution and ‖⋯‖ denotes the 2-Norm. 
During the training process, we represent the hop count vector and distance vector in the 

training dataset as matrices, defined as the AN dataset 𝐂𝐂𝐂𝐂a,𝐝𝐝a and the augmented dataset 
𝐂𝐂𝐂𝐂u,𝐄𝐄𝐄𝐄u, respectively, which are represented by matrices as follows: 
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We define the parameters in the localization prediction model designed in this paper as 𝛒𝛒 =
{𝒘𝒘1,𝒃𝒃1,𝒘𝒘2,𝒃𝒃2,𝒘𝒘3,𝒃𝒃3,𝒘𝒘4}. 𝒘𝒘𝒄𝒄  and 𝒃𝒃𝒄𝒄  denote the weight coefficient matrix and deviation 
vector in the convolution of the 𝐶𝐶th layer. The model is pre-training by a multi-layer logistic 
regression supervised learning, as well as fine-tuning the model parameters by back-
propagating the intersection of the predicted coordinates of the ANs with the actual 
coordinates and the loss function as residuals [29]. In the pre-training process, the training data 
𝐂𝐂𝐂𝐂a,𝐂𝐂𝐂𝐂u are firstly used as the initial input of the localization model, which is trained using 
(16) and updated with 𝒘𝒘1 and 𝒃𝒃1. After that, Layer-by-layer update of weights. In the fine-
tuning phase, we propose a concept of intersection degree. As shown in Fig. 5, when the 
communication range overlap between the predicted and actual coordinates of the AN is higher, 
the model’s positioning bias will be small. So in this model, we define the intersection degree 
𝒘𝒘4 as the ratio of the communication area between the predicted coordinates 𝑎𝑎�(𝑥𝑥�,𝑦𝑦�) and the 
actual coordinates 𝑎𝑎(𝑥𝑥,𝑦𝑦) of ANs, and the error between the predicted and true coordinates is 
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smaller when 𝒘𝒘4 is closer to one. 
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Fig. 5. Communication range intersection between actual and estimated coordinates 

In the fine-tuning phase, we use 𝐂𝐂𝐂𝐂a,𝐝𝐝a,𝐂𝐂𝐂𝐂u,𝐄𝐄𝐄𝐄u  as training data to optimize the 
parameters of the localization model. 
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where 𝑉𝑉(∙) denotes the transformation function of the data in the model from the hop count to 
the distance, 𝒅𝒅�𝑠𝑠 is the distance vector of AN 𝑎𝑎𝑠𝑠 after model prediction, and 𝐸𝐸𝑑̂𝑑𝑘𝑘 is the distance 
vector of node 𝑢𝑢𝑘𝑘 in the augmented dataset after model prediction. 

3.2.3 Node Localization 
After the training of the localization model is finished, all the UNs 𝑢𝑢𝑙𝑙 , 𝑙𝑙 ∈ {𝑚𝑚 + 1,𝑚𝑚 +
2,⋯ ,𝑛𝑛} in the region use the method in Section 3.1 to obtain the corrected hop count vector 
𝑪𝑪𝑪𝑪𝑙𝑙,𝑪𝑪𝑪𝑪𝑙𝑙 = {𝐶𝐶𝐶𝐶𝑙𝑙1,𝐶𝐶𝐶𝐶𝑙𝑙2,⋯ ,𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙} between itself and each AN, which will be input to the 
localization model. The detailed process is as follows: 

( ) ( )( )( )( )( ) { }3 2 1 1 2 3 1
ˆ ˆ ˆˆ , , ,l l f l f l l ls lmV f w w CH Ed Ed Ed= = + + + + =  Ed CH w w w CH b b b  (23) 

Where 𝑓𝑓(∙) denotes the function in (14), 𝐸𝐸𝑑̂𝑑𝑙𝑙𝑙𝑙 is the distance between the UN 𝑢𝑢𝑙𝑙 and the AN 
𝑎𝑎𝑠𝑠 estimated by the model. 

If the predicted coordinate of the UN 𝑢𝑢𝑙𝑙 is (𝑥𝑥�𝑙𝑙 ,𝑦𝑦�𝑙𝑙), the following set of distance equations 
can be constructed according to the coordinates of the AN 𝑎𝑎𝑠𝑠. 
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Equation (24) is a nonlinear system of equations, which can be transformed into a linearized 
equation by subtracting the third equation from the first two equations: 

EX D=  (25) 
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Solving (14) by the least squares method [34,35], the predicted coordinates can be obtained 
as 𝑋𝑋 = (𝑥𝑥�𝑙𝑙 ,𝑦𝑦�𝑙𝑙). 
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After obtaining the predicted coordinates based on the distance predicted by the localization 
model, we define the error present in (28) as: 
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The global error after localization prediction of all UNs in the region is defined as: 
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4. Incremental strategy-based residual regression networks 
In the simulation experiment part, we simulated a 100𝑚𝑚 × 100𝑚𝑚 area with 100 randomly 
deployed wireless sensor nodes.  

The performance metrics of the algorithm are evaluated by changing the AN percentage 
and the sensor nodes’ communication radius and comparing the DV-Hop [12], PSODV-Hop 
[14], WND-DV-Hop [15], and RANN [28] with the algorithm in this paper. Considering the 
interference factors in the real application scenario, we considered the Degree of Radio 
Irregularity (DOI) in our simulation and set it to 0.05  according to reference [36]. The 
schematic diagram of node distribution shown in Fig. 6 and Table 2 shows the detailed 
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parameter settings for the simulation section. All data are averaged after 100 simulations. 

 
Fig. 6. Schematic diagram of node distribution 

Table 2. The simulation experiment parameters 
Parameter Value 

The area size 100𝑚𝑚 × 100𝑚𝑚 
Number of sensor nodes, incremental step 60 − 160,20 
Anchor node percentage, incremental step 5% − 35%, 5% 

Node communication radius, incremental step 15 − 40𝑚𝑚, 5𝑚𝑚 
Number of simulation experiments 100 

DOI 0.05 

To verify the localization prediction performance of the model, we introduce the root mean 
square error and define the localization error equation as follows: 
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where 𝐾𝐾 denotes the amount of simulations, (𝑥𝑥�𝑙𝑙 ,𝑦𝑦�𝑙𝑙) and (𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙) are the predicted and actual 
coordinates of the UN 𝑢𝑢𝑙𝑙, the amount of sensor nodes is 𝑛𝑛, the amount of AN is 𝑚𝑚, and the 
communication radius of the nodes is 𝑅𝑅. 

4.1 Error analysis of the incremental stage 
The size of the error generated in the incremental phase can play a crucial role in the prediction 
accuracy of our model. Therefore, seeking the optimal parameter settings to minimize the error 
can lead to better results for our model. 

In section 3.1, we augmented the data set required for model training by an incremental 
strategy and in the process, introduced a correction coefficient to correct the minimum number 
of hops between nodes. However, influenced by factors such as hop distance error and network 
connectivity, we still need to find the optimal parameter values by magnifying the proportion 
of ANs in the region and increasing the communication radius of sensor nodes. As shown in 
Fig. 7 & Fig. 8, we compare the localization performance before and after the hop count 
correction with DV-Hop, and we can observe that the localization error of all algorithms 
decreases as the set parameter value increases, and the localization effect after the hop count 
correction is obviously better than the other two algorithms, which can prove that our 
optimization strategy in the data augmentation stage is very effective. 
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Fig. 7. Influence of anchor nodes percentage on incremental stage 

 
Fig. 8. Influence of nodes communication radius on incremental stage 

As shown in Fig. 7 & Fig. 8, the final positioning error can be significantly reduced by hop 
count correction. In Fig. 7, we set the communication radius of the AN to 30 𝑚𝑚. By increasing 
the proportion of ANs (incremental step of 5 𝑚𝑚), we can observe an overall decreasing trend 
of localization error for the three algorithms. However, when the percentage of ANs is greater 
than 25%, the positioning error before hop count correction starts to rise again. This is because 
an increase in the proportion of ANs means that the amount of amplified data is also increasing, 
and the cumulative error between nodes is also increasing, which results in the accuracy of the 
amplified data decreasing as the proportion of ANs increases. Moreover, an excessively high 
AN proportion does not improve the localization accuracy significantly. Also, it causes a great 
waste of resources, so selecting an appropriate AN proportion will also improve the 
localization performance of the algorithm to a certain extent. In Fig. 8, we set the percentage 
of ANs to 20%, increase the communication radius of the nodes (incremental step of 5𝑚𝑚), and 
decrease the localization error of the three algorithms. After the node communication radius 
reaches 30𝑚𝑚, the AN can achieve full coverage of the area, the network connectivity between 
the nodes in the area reaches the best state, and the decreasing trend of localization error tends 
to level off at this time. Therefore, considering when the percentage of ANs is 20% , and the 
communication radius is 30𝑚𝑚, the error of the augmented data is minimized, and the data 
optimization of the incremental phase is optimized. 

4.2 Localization error analysis of the model 
For range-free node localization algorithms, the ratio of ANs, the communication radius of the 
nodes, and the number of nodes in the region all impact the localization performance of the 
algorithm. We analyzed the effects of each of these parameters on the localization performance 
of the model in a variety of cases and compared it with several excellent localization 
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algorithms. 

4.2.1 Influences of anchor nodes percentage on model localization error 
ANs play a crucial role in node localization. If the percentage of ANs is too low, the coverage 
of UNs in the region is small, and the final localization accuracy of the algorithm is poor. If 
the percentage of ANs is too high, the accuracy of algorithm localization will be relatively 
improved, but the cost of network and manual deployment will be higher. So, the optimal AN 
ratio can make sure the algorithm’s accuracy and control the cost. To analyze the influence of 
AN proportion on the model localization error, we set the maximum communication radius 𝑅𝑅 
of the nodes to 30𝑚𝑚, the trend of AN percentage from 5% to 35%, and the incremental step 
is 5%, and 100 simulation experiments are conducted for each algorithm to take the average 
value. 

 
Fig. 9. Influences of anchor nodes percentage on model localization error 

The algorithm in this paper is significantly better than other algorithms. The RANN 
algorithm is proposed as a de-correction mechanism by using artificial neural networks, but 
this method causes data loss in the convolution process and needs to take into account the 
signal fading in practical application scenarios. There are also higher-order operations in this 
algorithm, which will increase the computational load of the node and shorten the lifetime of 
the node. In addition, through Fig. 9 we see that the first three algorithms are strongly 
influenced by the proportion of ANs. The algorithm localization error decreases sharply at the 
beginning of the increase of the ANs percentage, and when the AN percentage reaches 20%, 
the decreasing trend starts to level off, in which there is also a sudden change in localization 
error. Our algorithm model in this paper is trained and validated based on the data between 
some nodes through small data augmentation, so it is less influenced by the proportion of ANs, 
and the global localization error decreasing trend is more modest. By comparing and analyzing 
the simulation data under each parameter, it can be found that the proposed algorithm model 
in this paper outperforms several other algorithms in the field of overall localization 
performance, with a 18.9% improvement than PSODV-Hop. 

Table 3 shows the positioning errors of the proposed algorithm model with different AN 
percentages. The data in the table are obtained by averaging the localization error through 100 
simulation experiments with the communication radius set to 30𝑚𝑚. 
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Table 3. Localization errors at different anchor node percentages 
Anchor nodes percentage (%) 5 10 15 20 25 30 35 
Minimum error (m) 4.115 3.973 3.785 3.247 2.745 2.312 2.267 
Maximum error (m) 4.733 4.516 4.465 3.957 3.267 3.118 2.959 
Average error (m) 4.465 4.286 4.126 3.319 2.934 2.471 2.366 

4.2.2 Influences of nodes communication radius on model localization error 
The communication radius of a node affects the connectivity between nodes in a region. The 
larger the communication radius, the greater the node coverage, the greater the number of 
neighboring nodes, and the better the connectivity of the network. But an increase in the 
communication radius often means higher hardware requirements for the sensor nodes. We set 
the percentage of ANs to 20%, the trend of node communication radius from 15𝑚𝑚 to 40𝑚𝑚, 
the incremental step is 5𝑚𝑚, and 100 simulation experiments are conducted for each algorithm 
to take the average value, and analyze its effect on the algorithm localization error. 

 
Fig. 10. Influences of nodes communication radius on model localization error 

By increasing the communication radius of the sensor nodes, the positioning error of the 
algorithms all show a decreasing trend. The positioning effect of the model in this paper is 
obviously better than several other algorithms, which can keep below 10%. The first three 
algorithms show a sharp decrease in positioning error at the beginning of the radius increase, 
and the trend of positioning error tends to level off after the communication radius increases 
to 30𝑚𝑚. This is because these several positioning algorithms without ranging utilize distance 
vector routing algorithms for positioning. When the communication radius of the nodes 
increases to a certain level, the communication range of the ANs can basically achieve network 
communication coverage of the whole area, thus achieving better positioning results. 
Compared with these algorithms, RANN and the algorithmic model in this paper are less 
affected by the communication radius and have significantly welled localization effects. 
However, only the irregularity of the node distribution area is considered in the RANN 
algorithm, ignoring the data loss caused by back-propagation and communication success rate 
between nodes during model training and the gradient disappearance problem in the 
subsequent prediction process of node data by the artificial neural network. The training data 
of the proposed algorithm model are obtained by augmenting the network characteristics in a 
small area according to the incremental strategy. In Fig. 10, the localization error of the model 
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remains basically unchanged after the communication radius reaches 30𝑚𝑚. Moreover, after 
augmenting the data by incremental strategy, the error of the proposed algorithm can be 
maintained within 10%, which improves the localization performance by 22.8% compared 
with PSODV-Hop. Therefore, the overall analysis shows that the algorithm model is 
significantly more advantageous in the evaluation of each parameter. 

As shown in Table 4, the localization error of the model during different communication 
radius. The data in the table are obtained by averaging the positioning error through 100 
simulation experiments when the percentage of ANs is set to 20%. 

Table 4. Relationship between model localization error and node communication radius 
Node communication radius (m) 15 20 25 30 35 40 
Minimum error (m) 5.915 4.472 3.526 2.839 2.318 2.016 
Maximum error (m) 6.833 5.235 4.386 3.673 3.951 4.017 
Average error (m) 6.218 4.716 4.013 3.185 3.714 3.373 

4.2.3 Influences of anchor nodes percentage on model localization error 
The node distribution density is intimately related to the whole amount of nodes. When the 
whole amount of nodes is small, the distribution density of nodes in the region will be sparse, 
the connectivity between nodes will be reduced, and the localization accuracy of the algorithm 
will be poor. When the whole amount of nodes is large, the load of the network increases, 
which also affects the localization performance of the algorithm. So, to analyze the influence 
of the distribution density of sensor nodes in the region on the algorithm localization error. We 
set the proportion of ANs to 20%, the node communication radius to 30𝑚𝑚, the trend of the 
whole amount of sensor nodes in the region to 60 − 160 (node distribution density of 0.01−
0.016), and the incremental step size to 20. Each algorithm is simulated 100 times to take its 
average value as the average localization error. 

 
Fig. 11. Influence of the whole number of nodes on model localization error 

When the node distribution density in the region is incremented from 0.01− 0.016, the 
localization effect of different algorithms are shown in Fig. 11. By increasing the amount of 
sensor nodes in the region, the localization errors of the exemplified algorithms are gradually 
reduced, and the algorithm is more excellent than several other algorithms in the case of sparse 
or dense node distribution, with a 17.8% improvement in localization performance compared 
to PSODV-Hop. This also shows that, by establishing a residual regression-based node 
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localization model for WSNs, the node localization is treated as a regression problem solved 
with good localization accuracy. Unlike the intelligent optimization algorithm, this algorithmic 
model optimizes the model parameters through residual regression, which can effectively 
avoid the problem of falling into local optimal solutions. The analysis of the parameters 
through simulation experiments shows that, based on the parameter settings of the algorithm 
model in this paper, when the node distribution density is 0.01− 0.012, the localization 
accuracy of the model is more excellent than other related algorithms, and the best localization 
performance is achieved at this time. 

4.3 Algorithm complexity analysis 
The issue of energy consumption is also a significant element to be evaluated in the positioning 
of nodes in WSNs. The lower algorithm complexity reduces energy consumption, increases 
positioning speed, and extends the lifetime of the sensor nodes. According to the localization 
characteristics of our design algorithm model, the time complexity evaluation of the algorithm 
can be divided into data augmentation, model training, and localization. 

Assuming that there are 𝑚𝑚 ANs, 𝑛𝑛 −𝑚𝑚 UNs in the region, the augmented data nodes are 
𝑘𝑘, the amount of iterations in model training is 𝑇𝑇, and there are 𝑋𝑋 neurons in the hidden layer, 
the complexity of the data augmentation phase can be denoted as 𝑂𝑂(𝑚𝑚𝑚𝑚), the complexity of 
model training as 𝑂𝑂(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) , and the complexity of node localization as 𝑂𝑂(𝑚𝑚(𝑛𝑛 −𝑚𝑚)) . 
According to the node distribution characteristics of WSNs, the amount of ANs is small, the 
augmented data nodes 𝑘𝑘 ≪ 𝑛𝑛 −𝑚𝑚 and the overall structure of the model, and the amount of 
iterations are independent of the nodes, the training and localization of the model can be 
completed by the aggregation nodes, and the nodes only need to complete the hop count and 
distance estimation between themselves and the ANs, and the complexity notes 𝑂𝑂(𝑚𝑚(𝑛𝑛 −𝑚𝑚)).  

5. Conclusion 
In this paper, to solve the problems of large cumulative errors and poor localization 
performance of range-free algorithms. We propose an incremental strategy-based residual 
regression network for sensor node localization, which treats node localization as a regression 
problem with a feature data set. The incremental strategy is used to establish the hop-count 
and distance relationships between nodes in a small range to train the model, and a correction 
scheme is used to reduce the cumulative error generated therein. During the training of the 
model, we fine-tune the prediction results according to the intersection of the predicted 
coordinates of the AN with the communication range of the real coordinates and the loss 
function. Simulation shows that the algorithm effectively reduces the cumulative errors 
generated during the operation and has high localization accuracy. 

In future research, we will continue to focus on node localization optimization schemes in 
WSNs, with a bias toward solving sensor node localization problems in irregular regions. 
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