• Title/Summary/Keyword: local variance

Search Result 295, Processing Time 0.021 seconds

Scence Change Adaptive Bit Rate Control Using Local Variance (국부 분산을 이용한 장면 전환 적응 비트율 제어)

  • 이호영;김기석;박영식;송근원;남재열;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.675-684
    • /
    • 1997
  • The bit rate control algorithm which is capable of handing scene change is proposed. In MPEG-2 TM5, block variance is used to measure block activity. But block variance is not consistent with human visual system and does not differenciate the distribution of pixel values within the block. In target bit allocation process of TM5, global complexity, obtained by results of previous coded pictures, is used. Since I pictures are spaced relatively far apart, their complexity estimate is not very accurate. In the proposed algorithm local variance is used to measure block activity and detect scene change. Local variance, using deviation from the mean of neighboring pixels, well represents the distribution of pixel values within the block. If scene change is detected, the local variance information is used for target bit allocation process. Allocating target bits for I picture, the average local variance difference between previous and current I picture is considered. The experimental results show that the proposed algorithm can detect scene change very precisely and gives better picture quality and higher PSNR values than MPEG-2 TM5.

  • PDF

Adaptive Median Filter by Local Variance and Local Central Variance (로컬 분산과 로컬 중간값 분산을 이용한 적응형 메디안 필터)

  • 조우연;최두일
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.285-294
    • /
    • 2004
  • Median Filters in the Signal Processing have been most widely used and have demonstrated the most strongest effects. This paper proposes the Adaptive Median Filters by using noise detection. The basic algorithm of the proposed filters is to determine whether noise or not by the each noise judgement standards, and then take the Median Filter if it satisfies the conditions as a result of judgement and returns to the original image(No Filters) if not. This paper presented Noise Detection by Local Variance and Local Central Variance for noise judgement, compared and analyzed the features and performance of existing [5]∼[10] Filters. Filter improved on the result of executing the existing filters at the same condition and showed the effects over that when it was judged with naked eyes. Accordingly, the Adaptive Median Filters by Local Variance and Local Central Variance was proven to have reinforced edge preservation ability and have the strong features for removing the Impulse Noise of the Median Filter.

Testing of a discontinuity point in the log-variance function based on likelihood (가능도함수를 이용한 로그분산함수의 불연속점 검정)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Let us consider that the variance function in regression model has a discontinuity/change point at unknown location. Yu and Jones (2004) proposed the local polynomial fit to estimate the log-variance function which break the positivity of the variance. Using the local polynomial fit, Huh (2008) estimate the discontinuity point of the log-variance function. We propose a test for the existence of a discontinuity point in the log-variance function with the estimated jump size in Huh (2008). The proposed method is based on the asymptotic distribution of the estimated jump size. Numerical works demonstrate the performance of the method.

  • PDF

Discontinuous log-variance function estimation with log-residuals adjusted by an estimator of jump size (점프크기추정량에 의한 수정된 로그잔차를 이용한 불연속 로그분산함수의 추정)

  • Hong, Hyeseon;Huh, Jib
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.259-269
    • /
    • 2017
  • Due to the nonnegativity of variance, most of nonparametric estimations of discontinuous variance function have used the Nadaraya-Watson estimation with residuals. By the modification of Chen et al. (2009) and Yu and Jones (2004), Huh (2014, 2016a) proposed the estimators of the log-variance function instead of the variance function using the local linear estimator which has no boundary effect. Huh (2016b) estimated the variance function using the adjusted squared residuals by the estimated jump size in the discontinuous variance function. In this paper, we propose an estimator of the discontinuous log-variance function using the local linear estimator with the adjusted log-squared residuals by the estimated jump size of log-variance function like Huh (2016b). The numerical work demonstrates the performance of the proposed method with simulated and real examples.

Smoke Detection Method Using Local Binary Pattern Variance in RGB Contrast Imag (RGB Contrast 영상에서의 Local Binary Pattern Variance를 이용한 연기검출 방법)

  • Kim, Jung Han;Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1197-1204
    • /
    • 2015
  • Smoke detection plays an important role for the early detection of fire. In this paper, we suggest a newly developed method that generated LBPV(Local Binary Pattern Variance)s as special feature vectors from RGB contrast images can be applied to detect smoke using SVM(Support Vector Machine). The proposed method rearranges mean value of the block from each R, G, B channel and its intensity of the mean value. Additionally, it generates RGB contrast image which indicates each RGB channel’s contrast via smoke’s achromatic color. Uniform LBPV, Rotation-Invariance LBPV, Rotation-Invariance Uniform LBPV are applied to RGB Contrast images so that it could generate feature vector from the form of LBP. It helps to distinguish between smoke and non smoke area through SVM. Experimental results show that true positive detection rate is similar but false positive detection rate has been improved, although the proposed method reduced numbers of feature vector in half comparing with the existing method with LBP and LBPV.

Gradual Scene Change Detection Using Variance of Edge Image (에지 영상의 분산을 이용한 비디오의 점진적 장면전환 검출)

  • Ryoo, Han-Jin;Yoo, Hun-Woo;Jang, Dong-Sik;Kim, Mun-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.275-280
    • /
    • 2002
  • A new algorithm for gradual scene change detection in MPEG based frame sequences is proposed in this paper. The proposed algorithm is based on the fact that most of gradual curves can be characterized by variance distributions of edge information in the frame sequences. Average edge frame sequences are obtained by performing "sober" edge detection. Features are extracted by comparing variances with those of local blocks in the average edge frames. Those features are further processed by the opening operation to obtain smoothing variance curves. The lowest variance in the local frame sequences is chosen as a gradual detection point. Experimental results show that the proposed method provides 85% precision and 86% recall rate fur gradual scene changes.

Selection of Data-adaptive Polynomial Order in Local Polynomial Nonparametric Regression

  • Jo, Jae-Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.177-183
    • /
    • 1997
  • A data-adaptive order selection procedure is proposed for local polynomial nonparametric regression. For each given polynomial order, bias and variance are estimated and the adaptive polynomial order that has the smallest estimated mean squared error is selected locally at each location point. To estimate mean squared error, empirical bias estimate of Ruppert (1995) and local polynomial variance estimate of Ruppert, Wand, Wand, Holst and Hossjer (1995) are used. Since the proposed method does not require fitting polynomial model of order higher than the model order, it is simpler than the order selection method proposed by Fan and Gijbels (1995b).

  • PDF

An Improved Remote Sensing Image Fusion Algorithm Based on IHS Transformation

  • Deng, Chao;Wang, Zhi-heng;Li, Xing-wang;Li, Hui-na;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1633-1649
    • /
    • 2017
  • In remote sensing image processing, the traditional fusion algorithm is based on the Intensity-Hue-Saturation (IHS) transformation. This method does not take into account the texture or spectrum information, spatial resolution and statistical information of the photos adequately, which leads to spectrum distortion of the image. Although traditional solutions in such application combine manifold methods, the fusion procedure is rather complicated and not suitable for practical operation. In this paper, an improved IHS transformation fusion algorithm based on the local variance weighting scheme is proposed for remote sensing images. In our proposal, firstly, the local variance of the SPOT (which comes from French "Systeme Probatoire d'Observation dela Tarre" and means "earth observing system") image is calculated by using different sliding windows. The optimal window size is then selected with the images being normalized with the optimal window local variance. Secondly, the power exponent is chosen as the mapping function, and the local variance is used to obtain the weight of the I component and match SPOT images. Then we obtain the I' component with the weight, the I component and the matched SPOT images. Finally, the final fusion image is obtained by the inverse Intensity-Hue-Saturation transformation of the I', H and S components. The proposed algorithm has been tested and compared with some other image fusion methods well known in the literature. Simulation result indicates that the proposed algorithm could obtain a superior fused image based on quantitative fusion evaluation indices.

Comparison study on kernel type estimators of discontinuous log-variance (불연속 로그분산함수의 커널추정량들의 비교 연구)

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.87-95
    • /
    • 2014
  • In the regression model, Kang and Huh (2006) studied the estimation of the discontinuous variance function using the Nadaraya-Watson estimator with the squared residuals. The local linear estimator of the log-variance function, which may have the whole real number, was proposed by Huh (2013) based on the kernel weighted local-likelihood of the ${\chi}^2$-distribution. Chen et al. (2009) estimated the continuous variance function using the local linear fit with the log-squared residuals. In this paper, the estimator of the discontinuous log-variance function itself or its derivative using Chen et al. (2009)'s estimator. Numerical works investigate the performances of the estimators with simulated examples.

GEOSTATISTICAL UNCERTAINTY ANALYSIS IN SEDIMENT GRAIN SIZE MAPPING WITH HIGH-RESOLUTION REMOTE SENSING IMAGERY

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.225-228
    • /
    • 2007
  • This paper presents a geostatistical methodology to model local uncertainty in spatial estimation of sediment grain size with high-resolution remote sensing imagery. Within a multi-Gaussian framework, the IKONOS imagery is used as local means both to estimate the grain size values and to model local uncertainty at unsample locations. A conditional cumulative distribution function (ccdf) at any locations is defined by mean and variance values which can be estimated by multi-Gaussian kriging with local means. Two ccdf statistics including condition variance and interquartile range are used here as measures of local uncertainty and are compared through a cross validation analysis. In addition to local uncertainty measures, the probabilities of not exceeding or exceeding any grain size value at any locations are retrieved and mapped from the local ccdf models. A case study of Baramarae beach, Korea is carried out to illustrate the potential of geostatistical uncertainty modeling.

  • PDF