• Title/Summary/Keyword: local model

Search Result 5,494, Processing Time 0.03 seconds

Numerical Simulation of Advection and Diffusion using the Local Wind Model in Pusan Coastal Area, Korea (부산 연안역에서의 국지풍모델을 이용한 이류확산 수치모의)

  • 김유근;이화운;전병일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.29-41
    • /
    • 1996
  • The two-stage numerical model was used to study the relation between three-dimensional local wind model, advection/diffusion model of random walk method and second moment method on Pusan coastal area. The first stage is three dimensional time-dependent local wind model which gives the wind field and vertical dirrusion coefficient. The second stage is advection/diffusion model which uses the results of the first stage as input data. First, wind fields on Pusan coastal area for none synoptic scale wind showed typical land and sea breeze circulation, and convergence zone occured at 1200LST in northern of domain, in succession, moved northward of domain. Emissions from Sinpyeong industrial district were trasnported toward the inland by sea breeze during daytime, and reached the end part of domain about 1800LST. During nighttime, emissions return to sea by land breeze and vertical diffusion also contributes to upward transport. In order to use this model for forecast of air pollution concentration on the Pusan coastal area, it is necessary that computed value must be compared with measured value and wind fields model must also be dealt in detail.

  • PDF

Design of Sliding Mode Fuzzy-Model-Based Controller Using Genetic Algorithms

  • Chang, Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.615-620
    • /
    • 2001
  • This paper addresses the design of sliding model fuzzy-model-based controller using genetic algorithms. In general, the construction of fuzzy logic controllers has difficulties for the lack of systematic design procedure. To release this difficulties, the sliding model fuzzy-model-based controllers was presented by authors. In this proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Although, the stability and the performance is guaranteed by the proposed method, some design parameters have to be chosen by the designer manually. This problem can be solved by using genetic algorithms. The proposed method tunes the parameters of the controller, by which the reasonable accuracy and the control effort is achieved. The validity and the efficiency of the proposed method are verified through simulations.

  • PDF

Semiparametric Evaluation of Environmental Goods: Local Linear Model Approach

  • Jeong, Ki-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.209-216
    • /
    • 2003
  • Contingent valuation method (CVM) is a main evaluation method of nonmarket goods for which markets either do not exist at all or do exist only incompletely; an example is environmental good. A dichotomous choice approach, the most popular type of CVM in environmental economics, employs binary discrete choice models as statistical estimation models. In this paper, we propose a semiparametric dichotomous choice CVM method using local linear model of Fan and Gijbels (1996) in which probability distribution of error term is specified parametrically but latent structural function is specified nonparametrically. The computation procedures of the proposed method are illustrated with a simple design of simulations.

  • PDF

LARGE TIME CONVERGENCE FOR A CHEMOTAXIS MODEL WITH DEGENERATE LOCAL SENSING AND CONSUMPTION

  • Philippe Laurencot
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.479-488
    • /
    • 2024
  • Convergence to a steady state in the long term limit is established for global weak solutions to a chemotaxis model with degenerate local sensing and consumption, when the motility function is C1-smooth on [0, ∞), vanishes at zero, and is positive on (0, ∞). A condition excluding that the large time limit is spatially homogeneous is also provided. These results extend previous ones derived for motility functions vanishing algebraically at zero and rely on a completely different approach.

Unstructured discretisation of a non-local transition model for turbomachinery flows

  • Ferrero, Andrea;Larocca, Francesco;Bernaschek, Verena
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.555-571
    • /
    • 2017
  • The description of transitional flows by means of RANS equations is sometimes based on non-local approaches which require the computation of some boundary layer properties. In this work a non-local Laminar Kinetic Energy model is used to predict transitional and separated flows. Usually the non-local term of this model is evaluated along the grid lines of a structured mesh. An alternative approach, which does not rely on grid lines, is introduced in the present work. This new approach allows the use of fully unstructured meshes. Furthermore, it reduces the grid-dependence of the predicted results. The approach is employed to study the transitional flows in the T106c turbine cascade and around a NACA0021 airfoil by means of a discontinuous Galerkin method. The local nature of the discontinuous Galerkin reconstruction is exploited to implement an adaptive algorithm which automatically refines the mesh in the most significant regions.

Estimation of slamming coefficients on local members of offshore wind turbine foundation (jacket type) under plunging breaker

  • Jose, Jithin;Choi, Sung-Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.624-640
    • /
    • 2017
  • In this paper, the slamming coefficients on local members of a jacket structure under plunging breaker are studied based on numerical simulations. A 3D numerical model is used to investigate breaking wave forces on the local members of the jacket structure. A wide range of breaking wave conditions is considered in order to get generalized slamming coefficients on the jacket structure. In order to make quantitative comparison between CFD model and experimental data, Empirical Mode Decomposition (EMD) is employed for obtaining net breaking wave forces from the measured response, and the filtered results are compared with the computed results in order to confirm the accuracy of the numerical model. Based on the validated results, the slamming coefficients on the local members (front and back vertical members, front and back inclined members, and side inclined members) are estimated. The distribution of the slamming coefficients on local members is also discussed.

Spring Flow Prediction affected by Hydro-power Station Discharge using the Dynamic Neuro-Fuzzy Local Modeling System

  • Hong, Timothy Yoon-Seok;White, Paul Albert.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.58-66
    • /
    • 2007
  • This paper introduces the new generic dynamic neuro-fuzzy local modeling system (DNFLMS) that is based on a dynamic Takagi-Sugeno (TS) type fuzzy inference system for complex dynamic hydrological modeling tasks. The proposed DNFLMS applies a local generalization principle and an one-pass training procedure by using the evolving clustering method to create and update fuzzy local models dynamically and the extended Kalman filtering learning algorithm to optimize the parameters of the consequence part of fuzzy local models. The proposed DNFLMS is applied to develop the inference model to forecast the flow of Waikoropupu Springs, located in the Takaka Valley, South Island, New Zealand, and the influence of the operation of the 32 Megawatts Cobb hydropower station on springs flow. It is demonstrated that the proposed DNFLMS is superior in terms of model accuracy, model complexity, and computational efficiency when compared with a multi-layer perceptron trained with the back propagation learning algorithm and well-known adaptive neural-fuzzy inference system, both of which adopt global generalization.

  • PDF

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

LOCAL INFLUENCE ANALYSIS OF THE PROPORTIONAL COVARIANCE MATRICES MODEL

  • Kim, Myung-Geun;Jung, Kang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.233-244
    • /
    • 2004
  • The influence of observations is investigated in fitting proportional covariance matrices model. Local influence measures are obtained when all parameters or subsets of the parameters are of interest. We will also derive the local influence measure for investigating the influence of observations in testing the proportionality of covariance matrices. A numerical example is given for illustration.

Local Vibration Modes of Corrugated Panels for Rail Road Vehicles (철도 차량용 주름 판재의 국부진동 모드)

  • 김석현;장호식
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.527-534
    • /
    • 2000
  • Characteristics of local vibration modes of a corrugated panel are investigated by finite element analysis and modal testing. Structural modification model in the corrugation is proposed to increase the resonance frequency. This model decreases the fall by the local resonance in the transmission loss of the corrugated pallet and improves sound insulation performance. Damping effect of tile foam filled ill tile core cavity is also estimated by experiment The results of tile study offer useful information how to predict the severe local resonances in corrugations and how to prevent their undesirable effect ell the sound insulation and the vibration transmission.

  • PDF