Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.
A local point interpolation method (LPIM) is presented for the stress analysis of two-dimensional solids. A local weak form is developed using the weighted residual method locally in two-dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form and point interpolation. Since the shape functions possess the Kronecker delta function property, the essential boundary condition can be implemented with ease as in the conventional finite element method (FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh for both field interpolation and background integration. The implementation procedure is as simple as strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency of the present LPIM formulation are demonstrated through example problems. It is found that the present LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired accuracy in solids.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권11호
/
pp.2068-2086
/
2011
Based on the quincunx sub-sampling grid, the New Interleaved Hierarchical INTerpolation (NIHINT) method is recognized as a superior pyramid data structure for the lossless and progressive coding of natural images. In this paper, we propose a new image interpolation algorithm, Edge Adaptive Hierarchical INTerpolation (EAHINT), for a further reduction in the entropy of interpolation errors. We compute the local variance of the causal context to model the strength of a local edge around a target pixel and then apply three statistical decision rules to classify the local edge into a strong edge, a weak edge, or a medium edge. According to these local edge types, we apply an interpolation method to the target pixel using a one-directional interpolator for a strong edge, a multi-directional adaptive weighting interpolator for a medium edge, or a non-directional static weighting linear interpolator for a weak edge. Experimental results show that the proposed algorithm achieves a better compression bit rate than the NIHINT method for lossless image coding. It is shown that the compression bit rate is much better for images that are rich in directional edges and textures. Our algorithm also shows better rate-distortion performance and visual quality for progressive image transmission.
The modeling of realistic water-jet geometry is needed in order to facilitate the design modifications. The present paper proposes a method of generating inlet geometry. Inlet duct was represented by NURBS method which utilized the skinning and local cubic interpolation scheme. Three test examples are presented demonstrating the effectiveness of the methods of skinning and local cubic interpolation. Computational examples associated with practical configurations have shown the usefulness of the present method.
본 논문에서는 하이퍼볼릭 평면에서 임의의 분산 데이터 보간을 지역적으로 제어하는 새로운 방법을 개발하였다. 지역적 제어와 관련된 주제는 상호대화형식의 디자인분야에서 매우 중요하다. 특히 본 논문에서 제안한 방법은 하이퍼볼릭 평면상에서 형성되는 genus-N 객체 모델을 상호대화형식으로 디자인하는데 유효하게 적용될 수 있다. 특 변화된 데이터가 미치는 영향이 일정한 지역에만 국한되므로 일반 사용자가 genus-N객체를 상호대화형으로 디자인하기가 훨씬 편리하다. 따라서, 본 연구은 genus-N 객체를 형성하는데 사용한 하이퍼볼릭 평면상에서의 전역적 보간법을 발전시켜 하이퍼볼릭 평면에서의 지역적 보간법개발 및 구현을 목적으로 하고 있다. 이는 다음과 같은 주요 과정을 통하여 구현된다. 먼저, 보간 함수를 지역화하기 위하여 하이퍼볼릭 영역을 임의의 삼각형 패치로 세분화하고 각 데이터에 인접한 삼각형 패치들의 모임을 부 영역이라고 정의한다. 각 부 영역에서 가중치 함수가 설정된다. 마지막으로 중첩된 삼각형 영역의 세 개의 가중치를 혼합함으로써 지역적 보간 함수가 완성된다. 그 결과로서, 여러 개의 샘플 데이터 및 함수를 사용하여 전역적MQ 보간법과 비교한다.
A local radial point interpolation method (LRPIM) based on local residual formulation is presented and applied to solid mechanics in this paper. In LRPIM, the trial function is constructed by the radial point interpolation method (PIM) and establishes discrete equations through a local residual formulation, which can be carried out nodes by nodes. Therefore, element connectivity for trial function and background mesh for integration is not necessary. Radial PIM is used for interpolation so that singularity in polynomial PIM may be avoided. Essential boundary conditions can be imposed by a straightforward and effective manner due to its Delta properties. Moreover, the approximation quality of the radial PIM is evaluated by the surface fitting of given functions. Numerical performance for this LRPIM method is further studied through several numerical examples of solid mechanics.
본 논문에서는 영상의 영역별 특성을 고려한 영상의 보간 방법을 제안한다. 먼저 입력 영상은 에지 영역과 평탄한 저주파 영역으로 나뉜다. 그리고 에지 영역은 다시 방향성이 존재하는 에지 영역과 텍스처와 같이 에지의 방향성이 존재하지 않는 복잡한 고주파 영역으로 구분된다. 평탄한 저주파 영역에서는 쌍선형보간법 (Bilinear Interpolation), 방향성이 없는 복잡한 고주파 영역은 3차 컨벌루션 보간법 (Cubic Convolution Interpolation), 방향성이 있는 에지 영역은 NEDI (New Edge directed Interpolation)를 각각 적용한다. 다양한 영상에 대한 실험결과 제안한 방법이 기존이 방법보다 주관적 화질이 뛰어나고 우수한 성능을 발휘하는 것을 확인하였다.
국소선형회귀모형의 추정량은 좋은 특성을 가지고 있는 추정량으로서 가장 흔히 사용되는 비모수적 회귀모형의 추정량이라고 하겠다. 이러한 국소선형 추정량이 자료가 희박한 구간에서는 심하게 왜곡된 추정결과를 보이는 문제가 있으며, Hall과 Turlach(1997)이 제안한 선형보간법이 이러한 문제에 대한 매우 효과적인 해결방안이라는 것은 잘 알려진 사실이다. 그러나 Hall과 Turlach가 제안한 선형보간법이 이상값에 매우 취약하다는 사실은 아직 지적된 적이 없는 문제이다. 이 논문에서는 이상값의 영향력을 감소시킬 수 있는 수정된 선형보간법에 의한 유사자료의 생성방법을 제안하고, 그 특성을 모의실험을 통하여 기존의 방법과 비교하였다.
본 논문은 높은 품질 SR 이미지를 획득하기 위해 국소 그라디언트를 기반으로 적응형 보간법을 이용하는 SR 방법을 제공한다. 이 방법에서, 내삽 화소와 인접하는 유효한 화소 사이에 거리는 국소 그라디언트 특징을 이용하여 고려되며, 보간 계수는 LR 이미지의 국소 그라디언트를 고려한다. 픽셀의 국소 그라디언트는 더 작을수록, 그리고 메디안 필터는 보간된 HR 이미지의 블러링과 노이즈를 감소시키기 위해 적용된다. 실험 결과는 특히 이미지의 에지 부분에서, 다른 방법과 비교하여 제안된 방법의 유효성을 보여준다.
In standard finite element algorithms, the local stability conditions are not accounted for in the formulation of the tangent stiffness matrix. As a result, the loss of the local stability is not adequately related to the onset of the global instability. The phenomenon typically arises with material-type localizations, such as shear bands and plastic hinges. This paper addresses the problem in the context of the planar, finite-strain, rate-independent, materially non-linear beam theory, although the proposed technology is in principle not limited to beam structures. A weak formulation of Reissner's finite-strain beam theory is first presented, where the pseudocurvature of the deformed axis is the only unknown function. We further derive the local stability conditions for the large deformation case, and suggest various possible combinations of the interpolation and numerical integration schemes that trigger the simultaneous loss of the local and global instabilities of a statically determined beam. For practical applications, we advice on a procedure that uses a special numerical integration rule, where interpolation nodes and integration points are equal in number, but not in locations, except for the point of the local instability, where the interpolation node and the integration point coalesce. Provided that the point of instability is an end-point of the beam-a condition often met in engineering practice-the procedure simplifies substantially; one of such algorithms uses the combination of the Lagrangian interpolation and Lobatto's integration. The present paper uses the Galerkin finite element discretization, but a conceptually similar technology could be extended to other discretization methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.