Super Resolution Image Reconstruction based on Local Gradient and Median Filter

Local Gradient와 Median Filter에 근거한 초해상도 이미지 재구성

  • ;
  • 조상복 (울산대학교 전기전자정보시스템공학부)
  • Published : 2010.01.25

Abstract

This paper presents a SR method using adaptive interpolation based on local gradient features to obtain a high quality SR image. In this method, the distance between the interpolated pixel and the neighboring valid pixel is considered by using local gradient properties. The interpolation coefficients take the local gradient of the LR images into account. The smaller the local gradient of a pixel is, the more influence it should have on the interpolated pixel. And the median filter is finally applied to reduce the blurring and noise of the interpolated HR image. Experiment results show the effectiveness of the proposed method in comparison with other methods, especially in the edge areas of the images.

본 논문은 높은 품질 SR 이미지를 획득하기 위해 국소 그라디언트를 기반으로 적응형 보간법을 이용하는 SR 방법을 제공한다. 이 방법에서, 내삽 화소와 인접하는 유효한 화소 사이에 거리는 국소 그라디언트 특징을 이용하여 고려되며, 보간 계수는 LR 이미지의 국소 그라디언트를 고려한다. 픽셀의 국소 그라디언트는 더 작을수록, 그리고 메디안 필터는 보간된 HR 이미지의 블러링과 노이즈를 감소시키기 위해 적용된다. 실험 결과는 특히 이미지의 에지 부분에서, 다른 방법과 비교하여 제안된 방법의 유효성을 보여준다.

Keywords

References

  1. S. C. Park, M. K. Park, M. G. Kang, "Super-Resolution Image Reconstruction: A Technical Overview," IEEE Signal Processing Magazine, vol. 20, no. 3, pp. 21-36, 2003. https://doi.org/10.1109/MSP.2003.1203207
  2. R. Marsh, T. R. Young, T. Johnson, and D. Smith, "Enhancement of Small Telescope Images Using Super-Resolution Techniques," Publications of the Astronomical Society of the Pacific, vol. 116, no. 819, pp. 477–481, 2004. https://doi.org/10.1086/386381
  3. J. D. Ouwerkerk, "Image super-resolution survey," Image and Vision Computing, vol. 24, no. 10, pp. 1039–1052, 2006. https://doi.org/10.1016/j.imavis.2006.02.026
  4. R. Y. Tsai, and T. S. Huang, "Multiframe image restoration and registration," Advances in Computer Vision and Image Processing, no. 1, pp. 317–339, 1984.
  5. M. E. Tipping, and C. M. Bishop, "Bayesian Image Super-Resolution," Proceedings of Advances in Neural Information Processing Systems, vol. 15, pp. 1303–1310, 2003.
  6. M. Elad, and A. Feuer, "Restoration of a single super-resolution image from several blurred, noisy, and under-sampled measured images," IEEE Transactions on Image Processing, vol. 6, pp. 1646–1658, 1997. https://doi.org/10.1109/83.650118
  7. H. Stark, and P. Oskoui, "High-resolution image recovery from plane-image arrays using convex projections," Journal of the Optical Society of America A, vol. 6, no. 11, 1989.
  8. A. J. Patti, M. I. Sezan, and A. M. Tekalp, "High resolution image reconstruction from a low resolution image sequence in the presence of time-varying motion blur," Proc. of the IEEE Intl. Conf. on Image Processing, vol. 1, 1994.
  9. M. S. Alam, J. G. Bognar, R. C. Hardie, and B. J. Yasuda, "Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames," IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 5, pp. 915-923, 2000. https://doi.org/10.1109/19.872908
  10. S. W. Lee and J. K. Paik, "Image interpolation using adaptive fast B-spline filtering," IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, vol. 5, pp. 177-180, 1993.
  11. T. Boult and M. Chang, "Efficient image warping and super-resolution," Proceedings of the Third Workshop on Applications of Computer Vision, pp. 56–61, 1996.
  12. H. C. Ting, and H. M. Hang, "Spatial adaptive interpolation of digital image using fuzzy inference," Proc. of SPIE, vol. 2727, pp. 1206–1217, 1996.