• Title/Summary/Keyword: local fourier transform

Search Result 72, Processing Time 0.027 seconds

Measurement of Local Motional Characteristics of Cilia in Respiratory Epithelium Using Image Analysis (영상 분석 방법을 이용한 점막 세포 섬모의 국소적 운동 특성(CBF)의 정량화에 관한 연구)

  • 이원진;박광석
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.113-118
    • /
    • 1998
  • By their rapid and periodic actions, the cilia of the human respiratory tract play an important role in clearing inhaled noxious particles. Based on the automated image-processing technique, we studied the method analyzing ciliary beat frequency (CBF) objectively and quantitatively. Microscopic ciliary images were transformed into digitized gray ones through an image-grabber, and from these we extracted signals for CBF. By means of a FFT, maximum peak frequencies were detected as CBFs in each partitioned block for the entire digitized field. With these CBFs, we composed distribution maps visually showing the spatial distribution of CBFs. Through distribution maps of CBF, the whole aspects of CBF changes for cells and the difference of CBF of neighboring cells can be easily measured and detected. Histogram statistics calculated from the user-defined polygonal window can show the local dominant frequency presumed to be the CBF of a cell or a crust the region includes.

  • PDF

Adaptive-length pendulum smart tuned mass damper using shape-memory-alloy wire for tuning period in real time

  • Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.203-217
    • /
    • 2014
  • Due to the shift in paradigm from passive control to adaptive control, smart tuned mass dampers (STMDs) have received considerable attention for vibration control in tall buildings and bridges. STMDs are superior to tuned mass dampers (TMDs) in reducing the response of the primary structure. Unlike TMDs, STMDs are capable of accommodating the changes in primary structure properties, due to damage or deterioration, by tuning in real time based on a local feedback. In this paper, a novel adaptive-length pendulum (ALP) damper is developed and experimentally verified. Length of the pendulum is adjusted in real time using a shape memory alloy (SMA) wire actuator. This can be achieved in two ways i) by changing the amount of current in the SMA wire actuator or ii) by changing the effective length of current carrying SMA wire. Using an instantaneous frequency tracking algorithm, the dominant frequency of the structure can be tracked from a local feedback signal, then the length of pendulum is adjusted to match the dominant frequency. Effectiveness of the proposed ALP-STMD mechanism, combined with the STFT frequency tracking control algorithm, is verified experimentally on a prototype two-storey shear frame. It has been observed through experimental studies that the ALP-STMD absorbs most of the input energy associated in the vicinity of tuned frequency of the pendulum damper. The reduction of storey displacements up to 80 % when subjected to forced excitation (harmonic and chirp-signal) and a faster decay rate during free vibration is observed in the experiments.

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자 알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taek-Soo;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다. 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고요한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미있는 정보로 변환시켜줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망의 모형결합을 통해 기존연구과는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서는 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이브릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다. 기존의 주기분할방법론은 모형개발자입장에서 여러 가지 통계기준치중에서 최적의 기준치를 합리적으로 선택해야 하는 문제가 추가적으로 발생하며, 본 연구에서는 이상의 제반 문제들을 개선시키기 위해 통합방법론으로서 기존의 인공신경망모형을 구조적으로 확장시켰다. 이 모형에서 기존의 입력층 이전단계에 새로운 층이 정의된다. 이렇게 해서 생성된 새로운 통합모형은 기존모형에서 생성되는 기본적인 학습파라미터와 더불어, 본 연구에서 새롭게 제시된 주기분할층의 파라미터들이 모형의 학습성과를 높이기 위해 함께 고려된다. 한편, 이러한 학습과정에서 추가적으로 고려해야 할 파라미터 갯수가 증가함에 따라서, 본 모델의 학습성과가 local minimum에 빠지는 문제점이 발생될 수 있다. 즉, 웨이블릿분석과 인공신경망모형을 모두 전역적으로 최적화시켜야 하는 문제가 발생한다. 본 연구에서는 이 문제를 해결하기 위해서, 최근 local minimum의 가능성을 최소화하여 전역적인 학습성과를 높여 주는 인공지능기법으로서 유전자알고리즘기법을 본 연구이 통합모델에 반영하였다. 이에 대한 실증사례 분석결과는 일일 환율예측문제를 적용하였을 경우, 기존의 방법론보다 더 나운 예측성과를 타나내었다.

  • PDF

Skew Compensation and Text Extraction of The Traffic Sign in Natural Scenes (자연영상에서 교통 표지판의 기울기 보정 및 덱스트 추출)

  • Choi Gyu-Dam;Kim Sung-Dong;Choi Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.19-28
    • /
    • 2004
  • This paper shows how to compensate the skew from the traffic sign included in the natural image and extract the text. The research deals with the Process related to the array image. Ail the process comprises four steps. In the first fart we Perform the preprocessing and Canny edge extraction for the edge in the natural image. In the second pan we perform preprocessing and postprocessing for Hough Transform in order to extract the skewed angle. In the third part we remove the noise images and the complex lines, and then extract the candidate region using the features of the text. In the last part after performing the local binarization in the extracted candidate region, we demonstrate the text extraction by using the differences of the features which appeared between the tett and the non-text in order to select the unnecessary non-text. After carrying out an experiment with the natural image of 100 Pieces that includes the traffic sign. The research indicates a 82.54 percent extraction of the text and a 79.69 percent accuracy of the extraction, and this improved more accurate text extraction in comparison with the existing works such as the method using RLS(Run Length Smoothing) or Fourier Transform. Also this research shows a 94.5 percent extraction in respect of the extraction on the skewed angle. That improved a 26 percent, compared with the way used only Hough Transform. The research is applied to giving the information of the location regarding the walking aid system for the blind or the operation of a driverless vehicle

  • PDF

Subpixel Shift Estimation in Noisy Image Using Iterative Phase Correlation of A Selected Local Region (잡음 영상에서 국부 영역의 반복적인 위상 상관도를 이용한 부화소 이동량 추정방법)

  • Ha, Ho-Gun;Jang, In-Su;Ko, Kyung-Woo;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.103-119
    • /
    • 2010
  • In this paper, we propose a subpixel shift estimation method using phase correlation with a local region for the registration of noisy images. Phase correlation is commonly used to estimate the subpixel shift between images, which is derived from analyzing shifted and downsampled images. However, when the images are affected by additive white Gaussian noise and aliasing artifacts, the estimation error is increased. Thus, instead of using the whole image, the proposed method uses a specific local region that is less affect by noises. In addition, to improve the estimation accuracy, iterative phase correlation is applied between selected local regions rather than using a fitting function. the restricted range is determined by analyzing the maximum peak and the two adjacent values of the inverse Fourier transform of the normalized cross power spectrum. In the experiments, the proposed method shows higher accuracy in registering noisy images than the other methods. Thus, the edge-sharpness and clearness in the super-resolved image is also improved.

Segmentation of Defective Regions based on Logical Discernment and Multiple Windows for Inspection of TFT-LCD Panels (TFT-LCD 패널 검사를 위한 지역적 분별에 기반한 결함 영역 분할 알고리즘)

  • Chung, Gun-Hee;Chung, Chang-Do;Yun, Byung-Ju;Lee, Joon-Jae;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.204-214
    • /
    • 2012
  • This paper proposes an image segmentation for a vision-based automated defect inspection system on surface image of TFT-LCD(Thin Film Transistor Liquid Crystal Display) panels. TFT-LCD images have non-uniform brightness, which is hard to finding defective regions. Although there are several methods or proposed algorithms, it is difficult to divide the defect with high reliability because of non-uniform properties in the image. Kamel and Zhao disclosed a method which based on logical stage algorithm for segmentation of graphics and character. This method is a one of the local segmentation method that has a advantage. It is that characters and graphics are well segmented in an image which has non-uniform property. As TFT-LCD panel image has a same property, so this paper proposes new algorithm to segment regions of defects based on Kamel and Zhao's algorithm. Our algorithm has an advantage that there are a few ghost objects around the defects. We had experiments to prove performance in real TFT-LCD panel images, and comparing with the FFT(Fast Fourier Transform) method which is used a bandpass filter.

The effect of 4-hexylresorcinol on xenograft degradation in a rat calvarial defect model

  • Kang, Yei-Jin;Noh, Ji-Eun;Lee, Myung-Jin;Chae, Weon-Sik;Lee, Si Young;Kim, Seong-Gon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.29.1-29.9
    • /
    • 2016
  • Background: The objective of this study was to evaluate xenograft degradation velocity when treated with 4-hexylresorcinol (4HR). Methods: The scapula of a cow was purchased from a local grocery, and discs (diameter 8 mm, thickness 1 mm) were prepared by trephine bur. Discs treated with 4HR were used as the experimental group. Untreated discs were used as the control. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), antibacterial test, endotoxin test, and scanning electron microscopy (SEM) were performed on the discs. In vivo degradation was evaluated by the rat calvarial defect model. Results: The XRD and FT-IR results demonstrated successful incorporation of 4HR into the bovine bone. The experimental disc showed antibacterial properties. The endotoxin test yielded results below the level of endotoxin contamination. In the SEM exam, the surface of the experimental group showed needle-shaped crystal and spreading of RAW264.7 cells. In the animal experiments, the amount of residual graft was significantly smaller in the experimental group compared to the control group (P = 0.003). Conclusions: In this study, 4HR was successfully incorporated into bovine bone, and 4HR-incorporated bovine bone had antibacterial properties. In vivo experiments demonstrated that 4HR-incorporated bovine bone showed more rapid degradation than untreated bovine bone.

Preparation and Evaluation of Chrysin Encapsulated in PLGA-PEG Nanoparticles in the T47-D Breast Cancer Cell Line

  • Mohammadinejad, Sina;Akbarzadeh, Abolfazl;Rahmati-Yamchi, Mohammad;Hatam, Saeid;Kachalaki, Saeed;Zohreh, Sanaat;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3753-3758
    • /
    • 2015
  • Background: Polymeric nanoparticles are attractive materials that have been widely used in medicine for drug delivery, with therapeutic applications. In our study, polymeric nanoparticles and the anticancer drug, chrysin, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. Materials and Methods: PLGA: PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. In addition, the resulting particles were characterized by scanning electron microscopy. Results: The chrysin encapsulation efficiency achieved for polymeric nanoparticles was 70% control of release kinetics. The cytotoxicity of different concentration of pure chrysin and chrysin loaded in PLGA-PEG ($5-640{\mu}M$) on T47-D breast cancer cell line was analyzed by MTT-assay. Conclusions: There is potential for use of these nanoparticles for biomedical applications. Future work should include in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of breast cancer.

A VLSI Architecture of Systolic Array for FET Computation (고속 퓨리어 변환 연산용 VLSI 시스토릭 어레이 아키텍춰)

  • 신경욱;최병윤;이문기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.9
    • /
    • pp.1115-1124
    • /
    • 1988
  • A two-dimensional systolic array for fast Fourier transform, which has a regular and recursive VLSI architecture is presented. The array is constructed with identical processing elements (PE) in mesh type, and due to its modularity, it can be expanded to an arbitrary size. A processing element consists of two data routing units, a butterfly arithmetic unit and a simple control unit. The array computes FFT through three procedures` I/O pipelining, data shuffling and butterfly arithmetic. By utilizing parallelism, pipelining and local communication geometry during data movement, the two-dimensional systolic array eliminates global and irregular commutation problems, which have been a limiting factor in VLSI implementation of FFT processor. The systolic array executes a half butterfly arithmetic based on a distributed arithmetic that can carry out multiplication with only adders. Also, the systolic array provides 100% PE activity, i.e., none of the PEs are idle at any time. A chip for half butterfly arithmetic, which consists of two BLC adders and registers, has been fabricated using a 3-um single metal P-well CMOS technology. With the half butterfly arithmetic execution time of about 500 ns which has been obtained b critical path delay simulation, totla FFT execution time for 1024 points is estimated about 16.6 us at clock frequency of 20MHz. A one-PE chip expnsible to anly size of array is being fabricated using a 2-um, double metal, P-well CMOS process. The chip was layouted using standard cell library and macrocell of BLC adder with the aid of auto-routing software. It consists of around 6000 transistors and 68 I/O pads on 3.4x2.8mm\ulcornerarea. A built-i self-testing circuit, BILBO (Built-In Logic Block Observation), was employed at the expense of 3% hardware overhead.

  • PDF

Fabrication of Biogenic Antimicrobial Silver Nanoparticles by Streptomyces aegyptia NEAE 102 as Eco-Friendly Nanofactory

  • El-Naggar, Noura El-Ahmady;Abdelwahed, Nayera A.M.;Darwesh, Osama M.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.453-464
    • /
    • 2014
  • The current research was focused on the extracellular biosynthesis of bactericidal silver nanoparticles (AgNPs) using cell-free supernatant of a local isolate previously identified as a novel Streptomyces aegyptia NEAE 102. The biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102 was quite fast and required far less time than previously published strains. The produced particles showed a single surface plasmon resonance peak at 400 nm by UV-Vis spectroscopy, which confirmed the presence of AgNPs. Response surface methodology was chosen to evaluate the effects of four process variables ($AgNO_3$ concentration, incubation period, pH levels, and inoculum size) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. Statistical analysis of the results showed that the linear and quadratic effects of incubation period, initial pH, and inoculum size had a significant effect (p < 0.05) on the biosynthesis of silver nanoparticles by Streptomyces aegyptia NEAE 102. The maximum silver nanoparticles biosynthesis (2.5 OD, at 400 nm ) was achieved in runs number 5 and 14 under the conditions of 1 mM $AgNO_3$ (1-1.5% (v/v)), incubation period (72-96 h), initial pH (9-10), and inoculum size (2-4% (v/v)). An overall 4-fold increase in AgNPs biosynthesis was obtained as compared with that of unoptimized conditions. The biosynthesized silver nanoparticles were characterized using UV-VIS spectrophotometer and Fourier transform infrared spectroscopy analysis, in addition to antimicrobial properties. The biosynthesized AgNPs significantly inhibited the growth of medically important pathogenic gram-positive (Staphylococcus aureus) and gram-negative bacteria (Pseudomonas aeruginosa) and yeast (Candida albicans).