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Introduction

Detecting the features of significant patterns from their
own historical data is so much crucial to good
performance specially in time-series forecasting.

The methods used for time series analysis are
conventionally and heavily based on the concepts of
stationarity and linearity. Linear models as autoregressive
(AR), moving average (MA) and mixed (ARMA) models
are often used. These are special cases of the general
discrete linear model, which is a linear combination of
present and past value of a white noise process.

But, there are fields where non-stationary and non-linear
models are necessary, as in economics, oceanography,
engineering, medicine, etc. A wide variety of non-linear
models have been considered in the literature, as the
bilinear models, threshold models, ARCH models, etc.

Recently, there has been a renewal of interest in linear
expansions of signals, particularly using wavelets and
some of their generalization (Daubechies, 1992; Mallat,
1989; Rioul and Vetterli, 1991).

That is. a new data filtering method (or multi-signal
decomposition) such as specially, wavelet analysis is
considered more useful for handling the time-series that
contain strong quasi-cyclical components than other
methods. The reason is that wavelet analysis theoretically
makes much better local information according to different
time intervals from the filtered data.

Generally multi-signal decomposition method such as
Fourier analysis and wavelet analysis is a good method for
the extraction of cyclical information bearing signals from
corrupted observations. Specially, wavelet method having
that advantage is considered as a concept that will need to
be developed further for use in chaotic time series such as
short-term economic or financial markets. To date, the
present studies related to wavelet analysis are increasingly
being applied to many different fields.

In this study, we suggest a hybrid learning architecture
using multi-signal decomposition methods (i.e. wavelet
analysis) and apply the combined learning architecture to
forecasting one day ahead Korean Won / U.S. Dollar
currency market as a case study. A strategy is devised
using wavelet transform to construct a filter that is
significantly matched to the frequency of the time-series
within the combined model.

We also use an artificial neural network model as a basic
time series forecasting model. But, current artificial neural
network model building needs lengthy experimentation
and tinkering which is a major roadblock for the extensive
use of the method. So recently a new combined model
architecture using several algorithms has been suggested
to overcome the limitation of single neural network model.

Through experimental results with wavelet filtering
techniques we show the present different filtering criteria
of wavelet analysis to support the neural network learning
optimization and analyze the critical issues related to the
optimal filter design problems in wavelet analysis. That is,
those issues include that the human expert as a model
developer should be confronted with the judgmental
problem of finding the optimal filter parameter to generate
significant input variables for the forecasting model.

Finally, from the second purpose we suggest new
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general optimal filtering criteria of multi-signal
decomposition methods from our experimental learning
and validation results of the neural networks. That is, we
propose a new extended neural network model which is
four-layered neural network architecture having a signal
decomposition layer before arriving at the input layer.
Through that hybrid learning we tried to solve the present
threshold problems about the optimal filter design in
extracting the significant information from the original
data.

In summary, the principal objective of this paper is to
develop a new framework for multiscale signal
representation in financial forecasting using artificial
neural network models.

The rest of this paper is organized as follows. In the
following section, we briefly review fractal structure of
financial market, and in the third section also describe the
chaos analysis, specially embedding dimension. The
fourth section introduces multiresolution approach to
wavelet and then wavelet transformation methodology
about optimal decomposition from the original time series.
The fifth section suggests a new methodology of hybrid
system using genetic algorithms and then shows the
experimental results and the conclusion contains final
comments.

Fractal Structure of Chaotic Financial
Markets -

Market heterogeneity suggests that the different intentions
among market participants result in sensitivity by the
market to several different time-scales. Different types of
traders view the market with different time resolutions, for
example, hourly, daily, weekly, and so on. Short-term
traders evaluate the market at high frequency and have a
short memory. Small movements in the exchange rate
mean a great meal to the short-term trader. The long-
term trader evaluates lower frequency data with a much
longer memory of past data. He is only interested in
large movements in the price. These different types of
traders create the multiscale dynamics of the time series.

A scheme called Multiresolution Embedding is
constructed to discover whether some time-scales are
more predictable than others. To achieve this goal, an
Artificial Neural Network technique and a wavelet
analysis are adopted in this study.

The investigation of multiscale representations of signals
and the development of multiscale algorithms has been
and remains a topic of much interest in many contexts. In
some cases, such as in the use of fractal models for signals,
the motivation has directly been the fact that the
phenomenon of interest exhibits patterns of importance at
multiscales. A second motivation has been the possibility
of developing highly parallel and iterative algorithms
based on such representations.

One of the DWT applications is to use it as an analysis to
determine if the fractal dimension of a market indicator
maintains consistency through different levels of scale.
The reason is that the selection of the orthonormal wavelet
used in the transform may influence the result, since these
wavelets are themselves recursively defined and fractal in
nature.



Embedding Dimension

In a time series x(i=1,...,t,....» ), when the values of points
previous to t were observed and x, is to be predicted, the
group of d data which are immediately previous to x,, is to
be predicted, the group of d data which are immediately
previous 1o x,, is used to predict x,:

(Kets -+ 2 X %) = X, n

where X, is the predicted value of X,. The d data are
applied to the input nodes and X, is produced in the output
node as the predicted value. At the training stage, using
the goup of d data which are immediately previous to x, as
a learning sample, X, is produced by the network:

(xx'-d+|s R X1|) = Xx' (2)

The weight values of the network are estimated using the
etror backpropagation method (Rumelhart et al., 1986) in
which the sum of the errors between x, and X, for n
learning samples is minimized. At the prediction stage,
using these estimated weight values, x, is produced. In
the chaos theory, d is called the embedding dimension
(Farmer and Sidorowich, 1987). With a chaotic time
series, it is proved that the original characteristics of the
chaos can be reconstructed from a single time series by
using a proper embedding dimension.

In this study, we apply the dimension information to a
model building, specially to selecting the number of time
lagged input variables of neural network models.

Multiresolution Approach to Wavelets

The wavelet analysis is a robust tool that may be used to
obtain qualitative information for highly nonstationary
time series - specifically, that it may be used to detect a
small-amplitude harmonic forcing term even when the
dynamics is chaotic and even for short total times.
(Permann and Hamilton, 1992)

Each stage of resolution can be considered as a space
which could be imagined to be represented as a linear
combination of some suitable basis. Each resolution space
is a subset of the resolution space which has a higher
resolution. So we could say that 'mountain space’ is a
subset of ‘house-car space' which is a subspace of 'human-
animal-chair space' which is a subspace of 'key-spoon-coin
space'... which is a subspace of ‘atomic space'.

Frequency 4
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(a) Two Dimensional (Time-Frequency) Resolution of a
Short-term Fourier Transform
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Figure 1. Two Dimensional (Time-Frequency) Resolution
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Figure 2. A case of Two Dimensional (Time-Frequency)
Resolution of a Discrete Wavelet Transform (Daubechies
with order 4) using the daily Korean Won/US Dollar
returns

For present purposes we will be interested in the
multiresolution structure of curves or spectra. Intuitively,
we view high-frequency noise differently from broad, low-
frequency components due to e.g. baseline effects.

By employing the multiresolution view, we can build and
dismantle curves according to resolution level. So, the
wavelet functions are constructed to focus on different
resolution details in the signal at different positions. This
feature is possible because of the special structure of the
wavelet basis functions.

The aim of a wavelet transform is to decompose any
signal f into a summation of all the possible wavelet bases
at the different scales.

The coverage of the time-frequency plane for the wavelet
analysis is shown in Figure [(b).

Even though and the windowed Fourier transform (WFT)
including the discrete Fourier transform (DFT) usually
show the coverage as shown in Figure 1(a), they have their



own limitation compared to the wavelet transform. For
example, the DFT spreads frequency information over all
time and, thus, the loss of frequency characteristics of a
time series in the time domain. The transform process is
said to be non-local in the time domain. We can partially
compensate for this lack of localization by applying either
the WFT or the short-time Fourier transform (STFT) to
introduce time dependency.

But, the WFT filters are evenly spaced in the frequency
domain and the DWT filters shown in Figure 1 are related
by a scaling function equal to 2. The scaling function
could be any number, even a fraction. In addition, In the
WFT,. the filter bandwidths are constant, while the DWT
filters are, again, related by a factor of two. Thus, for
DWT filters. the width of the filter is proportional to its
center frequency. One way of looking at this is that the
wavelet approach partitions the data into blocks of equal
information content - representing a potentially very
useful characteristic of wavelet filters (Figure 1(b)).

Discrete Wavelet Transform (DWT) and
Wavelet Packet Transform (WPT)

In the pyramid algorithm the detail branches are not used
for further calculations, i.e. only the approximations at
each level of resolution are treated to yield approximation
and detail obtained at level m+1. Application of the
transform to both the detail and the approximation
coefficients results in an expansion of the structure of the
wavelet transform tree algorithm to the full binary tree
(Coifman and Wickerhauer, 1993; Coifman et al., 1993).

Coifman and Wickerhauser (1993) developed a wavelet
packet transform; this is a more general transform than the
discrete wavelet transform. The main difference is that
while in the discrete wavelet transform the detail
coefficients are kept, and the approximation coefficients
are further analyzed at each step, in the wavelet packet
transform both the approximation signal and the detail
signal are analyzed at each step. This results in redundant
information, as each level of the transform retains n
samples.

The main characteristic of the wavelet packet transform
is that it produces an arbitrary frequency split, which can
be adapted to the signal. While wavelet packet create
arbitrary binary slicing of frequencies (with associated
time resolution), they do not change over time. Often a
signal is first arbitrarily segmented, and then, the wavelet
packet decomposition is performed on each segment in an
independent manner.

There exist simple and efficient algorithms for both
wavelet packet decomposition and optimal decomposition
selection. We can then produce adaptive filtering
algorithms with direct applications in optimal signals

Highpass, Lowpass, and Bandpass Filters

The subspaces created by the wavelet transform roughly
correspond to the frequency subbands partitioning the
frequency bandwidth of the data set. These subspaces,
then forms a disjoint cover of the frequency space of the
original data set. In other words, the subspaces have no
clements in common and the union of the frequency
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subbands span the frequency span of the original data set.

Coifman proposed that any set of subspaces which are a
disjoint cover of the original data set is an orthonormal
basis. The wavelet transform basis is then but one of a
family of orthonormal bases with different subband
intervals.

Lowpass filters pass all frequencies below the specified
frequency, and they are usually employed for smoothing.
Highpass filters pass all frequencies above the specified
frequency. They are usually used to extract information
on local variation while suppressing overall signal levels.
Bandpass filters pass only those periodic components in
the vicinity of the specified frequency.

The most basic type of filter, the one from which
practically all other filters are derived, is the bandpass
filter. As the name implies, this filter passes a single
band of periodic components, stopping all components
having higher or lower frequencies. We initially focus on
the simple and eminently useful style that has a single
frequency of maximum response and that tapers smoothly
to zero on both sides of this frequency. It resembles the
filter shown in Figure 3.

Ampitude Amrpitude

Frequency Frequency

(a) Lowpass filter (b) Highpass fitter

_ Ampitude .

" Frequency

T TF
(c) Bandpass fitter requency

{d) Bandstop filter

Figure 3. Frequency-response characteristics of the four
basic filter types

The bandpass filter predominantly used in this study is
characterized by two parameters. The center frequency,
called £, is the frequency maximally favored by the filter.
It may be any value from 0.0 to 0.5 (the Nyquist
frequency) cycles per sample. The width, called s,
defines the width of the passband. Note that the
literature contains many definitions of the width of a
passband. We define the width in terms of the filter
equation, which will be seen shortly. The width s
specified in the same units as the frequency, and it
typically ranges from 0.01 to 0.2 or so.

The frequency response function of the bandpass filter
used here is a Gaussian function. This is the function
that multiplies the DFT of the time series before
transforming back to the time domain.

These filters including lowpass, highpass, or bandpass
filters are characterized by two parameters (frequency and
width).

For lowpass filters, the frequency is the cutoff below
which periodic components are passed and above which
periodic components are obstructed. The width is the
transition range over which the response of the filter goes
from one extreme (unimpeded passage) to the other
extreme (iotal cutoff). The frequency parameter always
has the range 0.0 to 0.5.

The important point is that the reciprocal of the
frequency parameter is the period of the periodic
component. The width parameter is trickier to specify.

There is no simple calculation to provide the correct
value. It is arbitrary choice. Unfortunately, a real



tradeoff is involved.

Choosing the Optimal Decomposition

Based on the organization of the wavelet packet library, it
is natural to count the decompositions issued from a given
orthogonal wavelet. As a result, a signal of length n = 2V
can be expanded in at most 2" different ways, the number
of binary subtrees of a complete binary subtree of depth N.
As this number may be very large, and since explicit
enumeration is generally unmanageable, it is interesting to
find an optimal decomposition with respect to a
convenient criterion. computable by an efficient algorithm.
We are looking for a minimum of the criterion.

Functionals verifying an additivity-type property are well
suited for efficient searching of binary-tree structures and
the fundamentals splitting. Classical entropy-based criteria
match these conditions and describe information-related
properties for an accurate representation of a given signal.
Entropy is a common concept in many fields, mainly in
signal processing. But these criteria have a few limitations
on choosing the optimal decomposition sub-series from
original time series. That is, they have an inefficient
learning problem and a misspecification problem of an
object function for gfobal model optimization.

Therefore, to solve these problems, we try to suggest a
new criterion of choosing the optimal decomposed sub-
series from original series by discrete wavelet transforms
in the following research model architecture.

Neural Networks

For time series predictions. the most popularly used neural
networks are clearly time delay neural networks (TDNN;
Weigend, Huberman, and Rumelhart, 1990) and recurrent
neural networks (RNN: Elman, 1990). The time delay
neural networks can be analyzed by using standard
methods and more the results of such analysis can be
applied for time series predictions directly, but they may
not be sufficient to characterize the patterns of highly
dynamic time series. On the other hand, the recurrent
neural networks are suited for applications that refer to the
patterns of genuinely time dependent inputs such as time
series predictions due to their dynamic feature.

While in the dynamic context the recurrent neural
networks can outperform the time delay neural networks,
they occasionally are difficult to be trained optimally by a
standard backpropagation algorithm due in part to the
dependence of their network parameters (Kuan and
Hornik, 1991).

In this study, The basic model we experiment with is
Backpropagation neural network (BPN) models which
have a parsimonious 4 input nodes, 4 hidden-nodes and 1
output node with single wavelet filter, i.e. highpass,
lowpass, or bandpass filter within the network structure.
The other model we experiment with is BPN models
which have 8 input nodes, 8 hidden-nodes and 1 output
node with multiple filters.

Genetic Algorithms
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Genetic algorithms were introduced by John Holland and
his group at the University of Michigan, of which Ken De
Jong was the first to apply these algorithms to parameter
optimization probiems.

A genetic algorithm is used to search the weight space
without use of any gradient information (Whitley and
Hanson, 1989; Montana and Davis, 1989). A complete
set of weights is coded in a binary string (or chromosome),
which has an associated fitness that depends on its
effectiveness. For example the fitness could be given by
-E where E is the value of the cost function for that set of
weights.  Starting with a random population of such
strings, successive generations are constructed using
genetic operators such as mutation and crossover to
construct new strings out of old ones, with some form of
survival of the fittest; fitter strings are more likely to
survive and to participate in mating (crossover) operations
(Figure 4).  The crossover operation combines part of one
string with part of another, and can in principle bring
together good building blocks - such as hidden units that
compute particular logical functions - found by chance in
different members of the population. The way in which
the weights are coded into strings and the details of the
genetic operators are both crucial in making this effective.

" Randomly created
initial Population

g

Selection
(whole population)
oy .

P ¥

Recombination

Figure 4. Genetic algorithm procedure

Genetic algorithms perform a global search and are thus
not easily fooled by local minima. The fitness function
does not need to be differentiable, so we can start with
threshold units in Boolean problems, instead of having to
use sigmoids that are later trained to saturation.

On the other hand there is a high computational penalty
for not using gradient information, particularly when it is
so readily available by back-propagating errors.  An
initial genetic search followed by a gradient method might
be an appropriate compromise. Or a gradient decent step
can be included as one of the genetic operators (Montana
and Davis, 1989). There are also large costs in speed and
storage for working with a whole population of networks.
perhaps making genetic algorithms impractical for large
network design.

Previous studies applied genetic algorithms to signal
analysis. Their purpose was to extract a set of features
characterizing the example of such a decomposition is the
Fourier transform, which decomposes on a basis of
harmonic functions. However, in the case of non-
stationary signals, i.e., signals whose characteristics



change with time, the Fourier transform does not yield a
useful characterization of the signal.

We use genetic algorithms to build a new optimization
method of decomposed univariate time series for financial
forecasting model as Neural Network.

Neural Networks Training by Genetic
Algorithm (GANN)

In the design of a neural network, a candidate parameter
set of all weights and thresholds can be encoded by, for
example, an integer string. Such a string is termed a
chromosome in the GA context and a digit of the string is
termed a gene. Initially, many such chromosomes are
randomly generated to form a population of candidate
designs. In this initial population, existing or known good
designs can be conveniently included, which usually leads
to a faster convergence. The GA uses three basic operators
termed selection, crossover, and mutation to evolve, by the
NP approach, a globally optimized network parameters set.
The size of the population and the probability rates for
crossover and mutation are termed control parameters of
the GA.

Research Model Architecture

In general, for a one-dimensional distrete-time signal, the
high frequencies influence the details of the filter levels,
while the low frequencies influence the deepest levels and
the associated approximations.

The original signal can be expressed as an additive
combination of the wavelet coefficients at the different
resolution levels.

In this section, we suggest a new hybrid time series
forecasting model architecture as shown in Figure 5.

Decompose the financial time series
nto different Time and Frequency Scales
using the Discrete wavelet transform

S

Phase

1
~”

Phase

i
o

Extract the refined or second order
highpass, lowpass, bandpass filters
from decomposed time series

\

“feédback" I

First Order Learning of
Neural Network Models
by Genetic Learning Method

e

Phase
11

Second Order Learning of
Neural Network Models
by Hill Climbing Learning Method

Phase
v

Figure 5. Proposed Research Framework

Specially, as shown in Figure 6, we suggest our hybrid
neural network model as a extended neural network
architecture compared to the prior model. That is, We
consider a significant scale component generation
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automatically from the original data within our model.
This function achieves at multi-scale extraction layer in
Figure 6.

The resolution of time series can be adjusted to local
parameters to detect its present features including
promising features in close time areas with more
sensitivity. Using multiple scales of resolution, the time
series forecasting can be refined in areas.

Feature based segmentation techniques detect local
features (such as transitions, lines, curves, in general
referred to as edges) based on values of appropriate local
operators.

To improve local prediction, a signal parameter such as
the refined lowpass filter, highpass filter, and bandpass
filter is proposed to control multiple scales of resolution
within our research framework.

Each of the 10 scales was then multiplied by a weighting
factor (0-1) and the weighted transform inverted back to a
time-series (Figure 6).

In summary, our model architecture has an advantage
over any other model architecture. That is, This hybrid
learning system can solve the present wavelet thresholding
problems in extracting the significant information from the
original data by the optimal filter design.

- Genenc Learning of Back;;ropagmmn Neural Network

The Cut-off
Detcrmination

of Wavelet

»  Thresholding
Criteria

v

") control
parameters

Muli-scale extraction

Inyer

Hidden
Inyer

Input
Inyer

Output
fayer

Figure 6. A Hybrid Neural network Model Architecture
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y,= Actual output of ith case of population at (¢+ /)th day,
#,= Neural network output of ith case of population at

(¢+ Dth day,

(") = Neural network model,

IWT, ith case of refined or second order wavelet
transformed filter of population at (#)th day,

X, = the ith input case of population at (f)th day,

DS(j) = jth automatically decomposed time series by
Daubechies wavelet transform with ith case of population
at (¢)th day,

N = the length of decomposition levels of pyramid or tree
algorithms,

n = the population size.



Among the various cost measures that one can pick for
finding adaptive time-frequency decompositions, we pick
an evolutionary data driven criteria. The benefits of this
are as follows. Since our wavelet thresholding cost
measure is more general than the others because of using
final model performance measure as a cost measure within
a unified model framework. In fact, these are a special
case of general cross-validation measure (Figure 8).

Wavelet Periodogram (Scalogram)

The scalogram (Rioul and Flandrin, 1992) refers to the
absolute value of the wavelet coefficients W,,, usually
plotted logarithmically and as a function of both the scale
and location indices.

Inspection of the scalogram (or of the wavelet
coefficients themselves) is useful when one needs to view
frequency/scale and location information at the same time.

The scalogram is the discrete wavelet transformation
(DWT) counterpart to the well-known notion of
periodogram in the spectral analysis of time series. In
the same manner as the periodogram produces an ANOVA
decomposition of energy of a signal to different Fourier
frequencies, the scalogram decomposes the energy to level
components. The scalogram of the discrete wavelet
transform of a time series is the key too used to
decompose the series into cycles of different frequencies.
But, as shown in Figure 6, by the distribution shape of
scalogram it is mostly difficult to extract the multi-cyclic
structure from the original data like a granger shape curve.

From Figure 7 we extract [owpass filter, highpass filter,
and bandpass filter from a decomposed time series (i.e.
band 1-10). For example, the highest band, band 1,
corresponds to high-frequency components in the data.
These components correspond to signals with very short
periods.

Table 1. Scalgoram of daily Korean Won/US Dollar
returns(InX-inX__,)

Decomp. Series | Frequency | Energy (power)
DSl 1-4 762.3629045
DS2 5-8 272.2633141
DS3 9-16 65.28630562
DS4 17-32 37.19868193
DS5 33-64 16.77289267
DSé6 65-128 6.330477868
DS7 129-256 2911816767
DS8 257-512 2.363012764
DS9 513-1024 1.593836382
DS10 1025-2048 0.91605887

Scalogram ]

+ Energy (PQW‘?L):‘

12 3 4 56 6 7 8 9 10
Deconp. Series
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Figure 6. Scalogram of the wavelet coeffcients of daily
Korean Won / US Dollar returns

In addition, we effectively extract a bandpass filter to the
data by eliminating the highest and lowest bands.

Therefore, we combine the total bands (1-10) of
decomposed output from the DWT into generating 3
separate bands, i.c. lowpass, highpass, and bandpass filter.

d -
d
band9
a ? ;'<_7 1
—
band10 1
a

Figure 7. Tree algorithm using daily Korean Won / US
Dollar returns (X: original series, a: approximation
components, d: detailed componenets, band 1 (the highest
highpass filter) — band10 (the lowest lowpass filter))

Various techniques for optimal bandwidth selection have
been studied in present studies (Moulin et al, 1992;
Wahba and Wold, 1975; Wahba, 1980; Brillinger, 1975,
Priestley, 1981; Jenkins and Watts, 1968). They produce
estimates that have a good overall bias variance tradeoff.
However, the bias versus variance tradeoff is generally not
optimal locally.

Selection of Weighting Factors for WT
Scales

Since the scales of the WT may be viewed as a filter bank,
the degree to which any single scale reflects the
probability distribution of the frequency characteristics of
the seizure examples can be calculated (i.e. a measure of
relevance). The 'relevance’ of each scale to all the seizure
examples can then be translated into weighting factor. For
example, if a scale represents no features of any of the
seizure examples, its weighting factor would be 0, while a
weighting factor of 1 would be applied to a scale that
represents features in all the examples. If a scale
represents features I only some examples, the weighting
factor would have an intermediate value. Using the
weighted scales, the inverted WT resuits in a filtered time-
series.

A measure of the cumulative relevance of each scale over
al the examples was calculated in the following way. The
WT for each seizure example used to train the neural
network was calculated. One scale was weighted 1{index
scale), all other scales of the transform were set to 0, and



the transform was inverted back into a time-series.

GA based Design for Hybrid Neural
Network Model

The idea of combining Genetic algorithms {GAs) and
Neural Network (NN), i.e. neuro-genetic approach came
up first in the late 1980s, and it has generated a intense
field of research in the 1980s.

Neural network is one tool that has generated a great deal
of interest because it addresses the nonlinear nature of the
financial markets. GAs offer a general-purpose tool for
performing search and optimization functions. GAs, in
addition to stand alone systems, are an excellent tool that
can be used with other technologies including neural
networks. machine learning systems and genetic
programming.

In this study. for use with the GA, every weight has been
coded by two digits with values in the range [-4, 4]. The
thresholds are also treated as weights, with an input value
of 1. In addition, our suggested multi-scale extraction
layer's weights are added to the present neural network
model.

Genetic algorithms basically are used to automatically
determine the wavelet thresholding cut-off parameters
including the learning parameters of neural networks. That
is, the wavelet thresholding parameters are adjusted to
optimize the performance of the financial forecasting over
the entire samples (i.e. training samples)

In the current study we use a population size of 50 and
the same GA adjusted parameters are maintained over the
entire study in order to estimate the average performance
of the NN models for different learning methods.

The genetic operators such as crossover and mutation
which are described in the previous section are used to
search for the optimal weight set solutions. Several
parameters must be defined for the above operators, and
the values of these parameters can greatly influence the
performance of the algorithm. The crossover rate ranges
0.5 - 0.8 and the mutation rate ranges 0.01- 0.06 for our
experiment. As a stopping condition, we use 5,000 trials.

In neuro-genetic approach, the learning of a neural
network is formulated as a weights optimization problem,
usually using the inverse-mean-square error as a fitness
measure. The basic concept behind this technique is as
follows. A complete set of weights is coded in a string,
which has an associated “fitness” representing its
effectiveness. Starting with a random population of such
strings. successive generations are constructed using
genetic operators to construct new strings out of old ones
such that better strings are more likely to survive and to
participate in crossover operations. Unlike the back-
propagation learning rule, GAs perform a global search
and are thus not easily fooled by local minimum. The
utilization of the linkage among population searches
makes the GA a good global search method.

Experiments
In this section, we evaluate our framework using a case of

the daily Korean Won / U.S. Dollar exchange rates are
transformed to the returns using the logarithm and through
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standardization from January 10, 1990 to June 25, 1997.
That is, the returns are defined as the logarithm of today’s
exchange rate divided by the logarithm of yesterday’s
exchange rate. The learning phase involved observations
from January 10, 1990 to August 4, 1995, while the testing
phase ran from August 7, 1995 to June 25, 1997.

We transform the daily returns into the decomposed
series such as an approximation part and a detail part by
Daubechies wavelet transform with order 4 for neural
network forecasting models.

The set of signal features that are extracted should be
independent of the time-varying noise field and the sensor
dynamics. Since the feature vectors are typically
composed of combinations of broadband and narrow band
energy estimates, the signal spectrum should be whitened
across the entire band. Thus, the first step is to use an
adaptive time-domain whitening filer to decorrelate the
data from the long-time ambient noise, interference, and
sensor characteristics, while passing short-duration signals
relatively unchanged.

It was observed in our previous study that discriminant
parameters obtained using wavelet transforms yield better
performance than those using autoregressive (AR) or
moving average (MA) modeling, but not better than those
using spectral coefficients.

The experimental results of our hybrid neural network
architecture are showed in Table 2.

At first step, we compare two learning methods within
hybrid system. That is, our model is trained using two
learning methods, i.e. only a genetic learning method and
a combined learning method by genetic and hill climbing
learning (GA-NN) and then each method is compared. As
shown in Table 2, Combined GA-NN method has better
performance than one genetic learning method.

Secondly, according to filter type, the performance is
different among them. The model using highpass, lowpass,
and bandpass filter at once has better performance than
models using partial filters.

Table 2. The Model Performance Using Test Samples

Cut-off Range | Filter Types | Learning | Performance
(A4 Methods (RMSE)
RWw¢ 2.939007
- - GA® 1.780642
(1-2) Highpass GA 1.629141
(3-10) Lowpass GA 1.726126
2-4) Bandpass GA 1.750383
(1-5, 2-10, Combined" GA 1.343301
1-5)
- - HC*® 1.754525
(1-2) Highpass GA-HC" 1.516126
(3-10) Lowpass GA-HC 1.721580
(2-4) Bandpass GA-HC 1.713277
(1-5, 2-10, Combined® GA-HC 1.119327
1-5)°

a: highpass (1-5), lowpass (2-10), bandpass (1-5),

b: highpaa+lowpass+bandpass filters, c: Random Walks,
d: Genetic Algorithms, e: Hill Climbing Learning,

h: Genetic Algorithms () + Hill Climbing Learning.

In this study, we compare our model performance with



the performance of benchmark models, i.e. the models
using prior representative thresholding methods to
evaluate our hybrid forecasting system. The results show
that our hybrid model has better than any other models in
terms of forecasting performance (Table 3). At this
experiments we use a benchmark model to compare with
our model's performance as follows. Namely, we use three
wavelet threshold algorithms, i.e. bestbasis, cross-
validation, and best level technique.

Table 3. The model performance comparison between
different wavelet filtering methods and a genetic approach
using test samples

Wavelet Threshold Filter Learning | Performance
Algorithms Types Methods |  (RMSE)
BestBasis LP*&HP® HC 1.74329

Cross-validation | LP&HP HC 1.676247
Best Level LP&HP HC 1.746597

GA* LP&HP& | GA-HC | 1.119327
BP*

a: Lowpass filter, b: Highpass filter,
¢: Bandpass filter, d: Genetic Algorithms.

Concluding Remarks

In this study, we have described a new framework for
modeling and analyzing signals at multiple scales in time
series forecasting problems.

In conclusion, this paper illustrates a decision support to
build a hybrid forecasting system using genetic algorithms.
By adjusting the input parameters to the appropriate values
muitiple scale of resolution is implemented easily by
discrete wavelet transform techniques. Once the financial
time series has been segmented into areas with relative
homogeneous value levels, the transformed information is
learned as a more refined filter to extract the desired
structure in neural network models.

We also conclude that our hybrid system of wavelet
transformations and neural networks is much better than
other models in increasing forecasting performance. That
reason is as follows.

Our system finds the optimal filter parameter to extract
significant input features of the forecasting model by
machine knowledge, i.e. from a combined data driven
approach and so improves the present different filtering
criteria power of wavelet analysis in viewpoint of the
neural network model optimization or performance.
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