• Title/Summary/Keyword: local flow condition

Search Result 229, Processing Time 0.028 seconds

Effects of Rotational Speed on the Performance in a Transonic Axial Compressor with a Dihedral Stator (회전속도가 상반각 정익을 적용한 천음속 축류 압축기 성능에 미치는 영향)

  • Hwang, Dongha;Choi, Minsuk;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents a numerical investigation of the effect of the rotation speed on the performance in a transonic axial compressor with the dihedral stator. Four stator geometries with different stacking line variables were tested in the flow simulations over the whole operating range. It was found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occurred at low mass flow rate with the 100 % design speed. The hub dihedral stator could suppress the shroud loss region and consequently improve the stall margin. In case of the 70 % design speed condition as the mass flow rate decreased, it was seen that the high loss region was placed at the midspan of the rotor passage. The dihedral stator slightly affected the local diffusion factor, but the performance of the compressor was not changed.

Numerical Analysis on the Beat and Mass Transport in Horizontal MOCVD Reactor for the Growth of GaN Epitaxy (수평형 MOCVD에 의한 GaN 에피층 성장시 반응로내의 열 및 물질전달에 관한 수치해석 연구)

  • 신창용;윤정모;이철로;백병준
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.341-349
    • /
    • 2001
  • Numerical calculation has been performed to investigate the fluid flow, heat transfer and local mass fraction of chemical species in the MOCVD(metalorganic chemical vapor deposition) manufacturing process. The mixing of reactants (trimethylgallium with hydrogen gas and ammonia) was presented by the concentration of each reactant to predict the uniformity of film growth. Effects of inlet size, location, mass flow rate and susceptor/cold wall tilt angle on the concentration were reported. From the numerical calculation, the concentration of reactants could be qualitatively predicted by the Nusselt number(heat transfer) and the optimum mass flow rate, wall tilt angle and inlet condition were considered.

  • PDF

Changes of Hemodynamic Characteristics during Angulated Stenting in the Stenosed Coronary (관상동맥 협착부에 각이진 스텐트 시술시 혈류역학적 특성변화)

  • Suh Sang-Ho;Cho Min-Tae;Kwon Hyuck-Moon;Lee Byung-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.717-720
    • /
    • 2002
  • The present study is to evaluate the performances of flow velocity and wall shear stress in the stenosed coronary artery using human in vivo hemodynamic Parameters and computer simulation. Initial and follow-up coronary angiographics in the patients with angulated coronary stenosis are performed. Follow-up coronary angiogram demonstrated significant difference in the percent of diameter in the stenosed coronary between two groups ($Group\;1:\;40.3{\%},\;Group\;2:\;25.5{\%}$). Flow-velocity wave obtained from in vivo intracoronary Doppler ultrasound data is used for the boundary condition for the computer simulation. Spatial and temporal variations of flow velocity vector and recirculation area are drawn throughout the selected segment of coronary models. The WSS of pre- and post-intracoronary stenting are calculated from three-dimensional computer simulation. Then negative shear stresses area on 3D simulation we noted on the inner wall of the post-stenotic area before stenting. The negative WSS is disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2. The present study suggest that hemodynamic forces exerted by pulsatile coronary circulation termed WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. The local recirculation area which has low or negative WSS, might lead to progression of atherosclerosis.

  • PDF

Effect of the Floor on the Ventilation Performance of the Vortex Vent (바닥의 위치가 Vortex Vent의 배기성능에 미치는 영향)

  • Lee, Jin-Won;Lim, Young-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.154-158
    • /
    • 2009
  • The vortex ventilation system (VV) which uses a rotating finned swirler installed coaxially with the exhaust duct is a very effective local ventilator. VV can enhance the capture depth by a factor of 3-5 compared to the conventional exhaust hood, in the absence of any solid walls nearby. In real situations there may exist ceiling, side wall and floor, all of which can affect the flow field and suction performance by way of the no-slip condition on the walls. 3D CFD simulation was performed in order to see the effect of the floor on the capture performance of the VV. The presence of floor reduced suction flow velocity, and increased the critical rotational speed which is the rotational speed required for stable vortex formation. Flow velocity profile along the axis could be well approximated by a universal functional form when the distance from the exhaust inlet is non-dimensionalized by the distance to the floor. Capture depth, define by the distance from the exhaust inlet to a point of velocity decreased to 10% of that at the inlet, is reduced by about 10% when the floor distance is 6 times the exhaust hood diameter.

  • PDF

Numerical Analysis of Heat Transfer in Pulsating Turbulent Pipe Flow (원관내 맥동난류유동에서의 열전달 수치해석)

  • 박희용;이관수;김창기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1282-1289
    • /
    • 1990
  • A numerical solution for heat transfer of pulsating turbulent pipe flow was presented under the condition of fully developed dynamic regime and uniform well heat flux. The k-.epsilon. turbulent model was adopted to describe turbulent characteristics. The results were given at following conditions ; Time-averaged Reynolds number equal to 10000 ; Strouhal number ranged from 0.0005 to 0.05 ; The peak velocity fluctuation varied from 20 to 80 percent of the mean velocity. It was found that the effect of pulsation on local heat transfer rate is greater at downstream than upstream and the heat transfer was increased or decreased according to the pulsating conditions.

Computational Fluid Dynamics Study on Performance Variation of PEMFC with Serpentine Flow Fields According to Humidity Condition (가습조건이 사형유로를 채택한 고분자 전해질 연료전지의 성능에 미치는 영향에 대한 전산유체역학 해석 연구)

  • Oh, Gyu-Hwan;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.604-612
    • /
    • 2009
  • Water management has been recognized as a crucial factor for achieving better performance and stability in polymer electrolyte membrane fuel cells (PEMFCs). Proper water management should provide favorable water conditions, including the local humidity, membrane water content, and liquid water saturation in PEMFCs, thereby leading to more uniform electrochemical reaction and current generation. In this study, computational fluid dynamics (CFD) simulation was conducted to investigate the effects of the cathode relative humidity (RH) on the performance of a 3 by $3\;cm^2$ PEMFC with serpentine flow fields. The CFD results showed that the best performance of the PEMFC was obtained for the cathode RH of 80%, but the performance variation was small for the cathode RH range of $60{\sim}100%$. However, the loss of the PEMFC performance was significant when the cathode RH was reduced below 40%. The reason for such performance variation was investigated through the detailed inspection of ohmic loss, activation and concentration overpotential, and water and current distributions.

Computational fluid dynamics analysis on the effect of inlet humidity for the performance of PEMFC with serpentine flow-fields (입구 가습량이 고분자 전해질 연료전지의 성능에 미치는 영향에 대한 CFD 해석연구)

  • Oh, Gyu-Hwan;Lee, Kyu-Jin;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2828-2833
    • /
    • 2008
  • Water management is one of many operating parameters, which influences the performance and stability of a proton exchange membrane fuel cell (PEMFC). Local humidity condition including liquid water saturation has profound impacts on the distributions of overpotentials, current density, and membrane water content. Computational fluid dynamics simulations were conducted to investigate the effect of the inlet humidity variation on the performance of a PEMFC of $9\;cm^2$ active cell area with serpentine flow fields. The results showed that the performance of the simulated PEMFC remained at an almost same level when the cathode inlet humidity was changed from 100% to 60%, while reaching its maximum at air humidity of 80%. However, further decrease in the cathode inlet humidity below 40% started to significantly deteriorate the performance of the PEMFC. The variations of overpotentials, membrane water content, etc. due to the change in the cathode inlet humidity were also discussed.

  • PDF

Design Modification and Correlation Verification between Reattachment Flow of Dispersed Jet and Local Thinning of Feedwater Heater (충돌로 인해 분산된 2상 제트스팀의 재부착 현상과 국부 감육 상관관계 규명 및 설계개선에 관한 연구)

  • Kim, Hyung-Joon;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.483-495
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line-inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

Validation of RANS models and Large Eddy simulation for predicting crossflow induced by mixing vanes in rod bundle

  • Wiltschko, Fabian;Qu, Wenhai;Xiong, Jinbiao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3625-3634
    • /
    • 2021
  • The crossflow is the key phenomenon in turbulent flow inside rod bundles. In order to establish confidence on application of computational fluid dynamics (CFD) to simulate the crossflow in rod bundles, three Reynolds-Averaged Navier Stokes (RANS) models i.e. the realizable k-ε model, the k-ω SST model and the Reynolds stress model (RSM), and the Large Eddy simulations (LES) with the Wall-Adapting Local Eddy-viscosity (WALE) model are validated based on the Particle Image Velocimetry (PIV) flow measurement experiment in a 5 × 5 rod bundle. In order to investigate effects of periodic boundary condition in the gap, the numerical results obtained with four inner subchannels are compared with that obtained with the whole 5 × 5 rod bundle. The results show that periodic boundaries in the gaps produce strong errors far downstream of the spacer grid, and therefore the full 5 × 5 rod bundle should be simulated. Furthermore, it can be concluded, that the realizable k-ε model can only provide reasonable results very close to the spacer grid, while the other investigated models are in good agreement with the experimental data in the whole downstream flow in the rod bundle. The LES approach shows superiority to the RANS models.

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.219-232
    • /
    • 2014
  • The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.