• Title/Summary/Keyword: local features

Search Result 1,418, Processing Time 0.029 seconds

Hybrid vibration-impedance monitoring in prestressed concrete structure with local strand breakage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.463-477
    • /
    • 2022
  • In this paper, a hybrid vibration-impedance-based damage monitoring approach is experimentally evaluated for prestressed concrete (PSC) structures with local strand breakage. Firstly, the hybrid monitoring scheme is designed to alert damage occurrence from changes in vibration characteristics and to localize strand breakage from changes in impedance signatures. Secondly, a full-scale PSC anchorage is experimented to measure global vibration responses and local impedance responses under a sequence of simulated strand-breakage events. Finally, the measured data are analyzed using the hybrid monitoring framework. The change of structural condition (i.e., damage extent) induced by the local strand breakage is estimated by changes in a few natural frequencies obtained from a few accelerometers in the structure. The damaged strand is locally identified by tomography analysis of impedance features measured via an array of PZT (lead-zirconate-titanate) sensors mounted on the anchorage. Experimental results demonstrate that the strand breakage in the PSC structure can be accurately assessed by using the combined vibration and impedance features.

MALICIOUS URL RECOGNITION AND DETECTION USING ATTENTION-BASED CNN-LSTM

  • Peng, Yongfang;Tian, Shengwei;Yu, Long;Lv, Yalong;Wang, Ruijin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5580-5593
    • /
    • 2019
  • A malicious Uniform Resource Locator (URL) recognition and detection method based on the combination of Attention mechanism with Convolutional Neural Network and Long Short-Term Memory Network (Attention-Based CNN-LSTM), is proposed. Firstly, the WHOIS check method is used to extract and filter features, including the URL texture information, the URL string statistical information of attributes and the WHOIS information, and the features are subsequently encoded and pre-processed followed by inputting them to the constructed Convolutional Neural Network (CNN) convolution layer to extract local features. Secondly, in accordance with the weights from the Attention mechanism, the generated local features are input into the Long-Short Term Memory (LSTM) model, and subsequently pooled to calculate the global features of the URLs. Finally, the URLs are detected and classified by the SoftMax function using global features. The results demonstrate that compared with the existing methods, the Attention-based CNN-LSTM mechanism has higher accuracy for malicious URL detection.

Masked Face Recognition via a Combined SIFT and DLBP Features Trained in CNN Model

  • Aljarallah, Nahla Fahad;Uliyan, Diaa Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.319-331
    • /
    • 2022
  • The latest global COVID-19 pandemic has made the use of facial masks an important aspect of our lives. People are advised to cover their faces in public spaces to discourage illness from spreading. Using these face masks posed a significant concern about the exactness of the face identification method used to search and unlock telephones at the school/office. Many companies have already built the requisite data in-house to incorporate such a scheme, using face recognition as an authentication. Unfortunately, veiled faces hinder the detection and acknowledgment of these facial identity schemes and seek to invalidate the internal data collection. Biometric systems that use the face as authentication cause problems with detection or recognition (face or persons). In this research, a novel model has been developed to detect and recognize faces and persons for authentication using scale invariant features (SIFT) for the whole segmented face with an efficient local binary texture features (DLBP) in region of eyes in the masked face. The Fuzzy C means is utilized to segment the image. These mixed features are trained significantly in a convolution neural network (CNN) model. The main advantage of this model is that can detect and recognizing faces by assigning weights to the selected features aimed to grant or provoke permissions with high accuracy.

Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure

  • Dong, Song;Yang, Jucheng;Chen, Yarui;Wang, Chao;Zhang, Xiaoyuan;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4126-4142
    • /
    • 2015
  • Finger vein recognition is a biometric technology using finger veins to authenticate a person, and due to its high degree of uniqueness, liveness, and safety, it is widely used. The traditional Symmetric Local Graph Structure (SLGS) method only considers the relationship between the image pixels as a dominating set, and uses the relevant theories to tap image features. In order to better extract finger vein features, taking into account location information and direction information between the pixels of the image, this paper presents a novel finger vein feature extraction method, Multi-Orientation Weighted Symmetric Local Graph Structure (MOW-SLGS), which assigns weight to each edge according to the positional relationship between the edge and the target pixel. In addition, we use the Extreme Learning Machine (ELM) classifier to train and classify the vein feature extracted by the MOW-SLGS method. Experiments show that the proposed method has better performance than traditional methods.

Feature information fusion using multiple neural networks and target identification application of FLIR image (다중 신경회로망을 이용한 특징정보 융합과 적외선영상에서의 표적식별에의 응용)

  • 선선구;박현욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.266-274
    • /
    • 2003
  • Distance Fourier descriptors of local target boundary and feature information fusion using multiple MLPs (Multilayer perceptrons) are proposed. They are used to identify nonoccluded and partially occluded targets in natural FLIR (forward-looking infrared) images. After segmenting a target, radial Fourier descriptors as global shape features are defined from the target boundary. A target boundary is partitioned into four local boundaries to extract local shape features. In a local boundary, a distance function is defined from boundary points and a line between two extreme points. Distance Fourier descriptors as local shape features are defined by using distance function. One global feature vector and four local feature vectors are used as input data for multiple MLPs to determine final identification result of the target. In the experiments, we show that the proposed method is superior to the traditional feature sets with respect to the identification performance.

Local Environmental Effects on AGN Activities

  • Kim, Jaemin;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.43.2-43.2
    • /
    • 2013
  • The local environmental effects on the triggering of active galactic nucleus(AGN) activity has been studied with many authors, but there still be controversy. We perform statistical analysis for nearby(0.01 < z < 0.05) volume limited(Mr < -19) samples with visual inspection based on Sloan Digital Sky Survey Data Release7. We inspect ~60,000 galaxy images visually to find peculiar objects which show not only ongoing merging features and tidal features, but also post merging features like ring or shell structures. We found that these peculiar features were shown at least 2 times more frequently among AGN host galaxies than non AGN galaxies, and this trend was still visible when galaxy properties such as color or stellar mass are fixed. Furthermore, L[OIII] and L(Ha) of peculiar galaxies are found to be more increased than those of normal galaxies. In order to ensure this results, we also checked it for a smaller subsample with ~2mag deeper monochromatic images provided from SDSS Stripe82 database, and found consistent results. At last, we perform the same work for pair(r_p<80kpc/h, delta_v<200km/s) systems. Because of some pair systems which do not interact gravitationally in actuality but fulfill the criteria for identification of pair system, the trends are found to be slightly weaker. We also found that line luminosities are increased consistently as projected distance between central and companion galaxy decreased, and as companion color gets bluer. Overall, the results of this study tell us that the local environment of galaxies affect the frequency as well as the strength of AGN activity. Local environmental effects, however, may not be the dominant triggering mechanism for AGN activity since the majority of peculiar galaxies are non AGN galaxies.

  • PDF

Detecting Object of Interest from a Noisy Image Using Human Visual Attention

  • Cheoi Kyung-Joo
    • International Journal of Contents
    • /
    • v.2 no.1
    • /
    • pp.5-8
    • /
    • 2006
  • This paper describes a new mechanism of detecting object of interest from a noisy image, without using any a-priori knowledge about the target. It employs a parallel set of filters inspired upon biological findings of mammalian vision. In our proposed system, several basic features are extracted directly from original input visual stimuli, and these features are integrated based on their local competitive relations and statistical information. Through integration process, unnecessary features for detecting the target are spontaneously decreased, while useful features are enhanced. Experiments have been performed on a set of computer generated and real images corrupted with noise.

  • PDF

No-reference Image Blur Assessment Based on Multi-scale Spatial Local Features

  • Sun, Chenchen;Cui, Ziguan;Gan, Zongliang;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4060-4079
    • /
    • 2020
  • Blur is an important type of image distortion. How to evaluate the quality of blurred image accurately and efficiently is a research hotspot in the field of image processing in recent years. Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this paper presents a no-reference image blur/sharpness assessment method based on multi-scale local features in the spatial domain. First, considering various content has different sensitivity to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, the Gaussian scale space of the image is constructed, and the categorized contrast features between the original image and the Gaussian scale space images are calculated to express the blur degree of different image contents. To simulate the impact of viewing distance on blur distortion, the distribution characteristics of local maximum gradient of multi-resolution images were also calculated in the spatial domain. Finally, the image blur assessment model is obtained by fusing all features and learning the mapping from features to quality scores by support vector regression (SVR). Performance of the proposed method is evaluated on four synthetically blurred databases and one real blurred database. The experimental results demonstrate that our method can produce quality scores more consistent with subjective evaluations than other methods, especially for real burred images.

Surface Approximation Utilizing Orientation of Local Surface

  • Ko, Myeong-Cheol;Sohn, Won-Sung;Choy, Yoon-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.698-706
    • /
    • 2003
  • The primary goal of surface approximation is to reduce the degree of deviation of the simplified surface from the original surface. However it is difficult to define the metric that can measure the amount of deviation quantitatively. Many of the existing studies analogize it by using the change of the scalar quantity before and after simplification. This approach makes a lot of sense in the point that the local surfaces with small scalar are relatively less important since they make a low impact on the adjacent areas and thus can be removed from the current surface. However using scalar value alone there can exist many cases that cannot compute the degree of geometric importance of local surface. Especially the perceptual geometric features providing important clues to understand an object, in our observation, are generally constructed with small scalar value. This means that the distinguishing features can be removed in the earlier stage of the simplification process. In this paper, to resolve this problem, we present various factors and their combination as the metric for calculating the deviation error by introducing the orientation of local surfaces. Experimental results indicate that the surface orientation has an important influence on measuring deviation error and the proposed combined error metric works well retaining the relatively high curvature regions on the object's surface constructed with various and complex curvatures.

  • PDF

Identification of Chinese Event Types Based on Local Feature Selection and Explicit Positive & Negative Feature Combination

  • Tan, Hongye;Zhao, Tiejun;Wang, Haochang;Hong, Wan-Pyo
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.233-238
    • /
    • 2007
  • An approach to identify Chinese event types is proposed in this paper which combines a good feature selection policy and a Maximum Entropy (ME) model. The approach not only effectively alleviates the problem that classifier performs poorly on the small and difficult types, but improve overall performance. Experiments on the ACE2005 corpus show that performance is satisfying with the 83.5% macro - average F measure. The main characters and ideas of the approach are: (1) Optimal feature set is built for each type according to local feature selection, which fully ensures the performance of each type. (2) Positive and negative features are explicitly discriminated and combined by using one - sided metrics, which makes use of both features' advantages. (3) Wrapper methods are used to search new features and evaluate the various feature subsets to obtain the optimal feature subset.