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ABSTRACT

The primary goal of surface approximation is to reduce the degree of deviation of the simplified surface
from the original surface. However it is difficult to define the metric that can measure the amount of
deviation quantitatively. Many of the existing studies analogize it by using the change of the scalar
quantity before and after simplification. This approach makes a lot of sense in the point that the local
surfaces with small scalar are relatively less important since they make a low impact on the adjacent
areas and thus can be removed from the current surface. However using scalar value alone there can
exist many cases that cannot compute the degree of geometric importance of local surface. Especially
the perceptual geometric features providing important clues to understand an object, in our observation,
are generally constructed with small scalar value. This means that the distinguishing features can be
removed in the earlier stage of the simplification process. In this paper, to resolve this problem, we present
various factors and their combination as the metric for calculating the deviation error by introducing
the orientation of local surfaces. Experimental results indicate that the surface orientation has an important
influence on measuring deviation error and the proposed combined error metric works well retaining
the relatively high curvature regions on the object’s surface constructed with various and complex

curvatures.
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1. INTRODUCTION

n surface simplification, the goal is to take a
I complex polygonal model as input and gen-
erate a simplified model as output [14], which is
an approximation of the original model. The ap-
proximation must be conducted in such a way that
the loss of geometric properties of original model
can be minimized if possible. In the last few years,
the studies on surface simplification have received
increasing attention and there has been many
algorithms reported.

The simplification algorithms start with an
original model, iteratively remove elements from
the model in each step until the desired level of
approximation is achieved. To decide the order of

elements for removal during the simplification
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stage, most existing algorithms use the error metric
based on scalar optimization, such as distance.
However, it is difficult to define exactly the local
characteristics of current surface using the distance
metric, which is intrinsically scalar component and
the degree of loss for geometric information caused
by simplification cannot be guaranteed.

In this paper, we define an error metric reflecting
both of the local characteristics of surface and the
geometric variation before and after simplification.
To define an error metric, orientation component
of local surface as well as scalar is considered.
Characteristic surface features are mostly corn-
centrated in small area with small scalar values,
thus their decimation costs are often low. This
means that they cannot be preserved to the later
simplification stage. By considering orientation
component of each surface element that are
independent from the amount of scalar, we can
reconsider whether or not to preserve them.
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We present some experimental results indicating
that the proposed approach works well with

excellent shape preservation of the original model.

1.1 Notations

We assume that a polygonal surface model is
simply a set of triangular polygons in 3D Euclidean
space R’. An arbitrary polygonal surface model
M={V,T} is a set of vertex set V={v;,02,03Um} and
triangle set T={t;t5ts5,..t:}. Every vertex uv;=
{x:,i,2:} is a vector in the Euclidian space F°. Each
triangle t; is represented by a set of vertices
{vir,viz,0i3}. M is a surface mesh in the i stage of
iterative simplification process and normally means
the current mesh. M;.; is the successive mesh of
M;. A directional edge & is denoted by a set of
ordered vertex pairs {u,v}, where u,v € V. P(u) is
a set of planes of the triangles that meet at vertex
uand P( &) is, generally two, a set of planes P(u) N
P(v). Then, P{ &) is a set of {P(u)-P( &)} in mesh
M; and Pi+1( &) is a set of {P(w)-P(&)} in mesh
M;.;, respectively.

2. RELATED WORKS

In this section, we discuss the previous works in
two aspects, error metric and topological operation.

The error metric used in each simplification
algorithm provides the clues for the removal order
of each element to minimize the approximation
€rror.

The distance, in [5], between average planes
composed of each given vertex and surrounding
vertices is used for error metric. And in [7] and [4],
the curvature of local surface around the given
vertex and in [8)] distance between the simplified
and the original mesh are used as error metric,
respectively. For the planes of triangles adjacent to
given vertex, maximum distance from the cor-
responding planes in intermediate mesh, means
global error, are used for error metric, in [17]. In

each case, when the decimation cost of each vertex

is within the predefined threshold, they are removed.
Energy function, in [9] and [12], using the sum of
squared distance between sample vertices from the
original and simplified mesh as main factor is used
for error metric. In [14], the measure of sum of
squared distance between vertex and associated
planes is used as error metric. And in [10], the
degree of change of geometric properties, such as
area and volume, between successive meshes is
used for error metric.

In terms of local topological operation, vertex and

edge decimation methods out of the previous

approach are relevant to our work [3,6].

The vertex decimation method needs robust re-
triangulation method, as in [15], to fill the resulting
hole caused by the removal of a vertex, and mainly
focus on the connectivity of a surface rather than
the geometric characteristics. So, the quality of the
approximation largely depends on the re-
triangulation operation. In addition, the intermediate
surface models, which are generated from the
simplification process, do not have any direct hi-
erarchical relationship with each other.

In edge decimation approach, each algorithm has
to determine the positioning policy for a new vertex
to replace the edge after decimation operation. This
new vertex may or may not exist in the original
mesh. The error metrics used in each algorithm
provide the clues for optimal positioning of the
generated vertex. The optimal approach means that,
in most cases, the generated vertex is not a subset
of the original mesh.

Each of the previous simplification algorithms
has good and bad at the same time. Therefore, it
is desirable to choose appropriate simplification ap-
proach, according to the characteristics of surface
model to be simplified or of application area. By the
reason of real-time rendering which we focus on
we use the edge decimation method as the basic
topological operation of the proposed simplification
algorithm. We will discuss more details in the

following section.
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3. SURFACE APPROXIMATION

The surface simplification is the process of
approximation. That is, as shown in Fig. 1, if there
is an original mesh M defined by the function f(t),
the surface simplification generates a mesh M,
which means approximation, defined by the function
a(t).

Over-estimated error

4
J Under-estimated error
Y

M =g()

M=1

Fig. 1. Surface approximation error in mathematical
function domain.

During the approximation process, there occur
approximation errors inevitably. A key point of
simplification is to decrease the overall approx-
imation errors. The approximation errors mean the
difference or deviation between the meshes, M and
M’. However, it is difficult to define the criteria,
or error metric, exactly describing the degree of
difference. Although they do not guarantee the
difference perfectly, we can use the two commonly

used error metrics from mathematics, L. and L,
norms. The L, norm, which measures the max-
imum deviation between M and M, is defined by
the equation (1).

Hf—gll = MAX|RH— g($)| (1

The L, norm is defined by the equation (2),

where, k= L .
n

=l o= (E, GB-s? » )" @

These two norms have the advantages and
disadvantages at the same time. The L . norm is

more useful because it provides a maximum error
bounds. However, it is over-sensitive to the

geometric noise. The L, norm is more tolerable

of noise and provides a better estimate of the
overall fit, because it provides a measure of the
average deviation between the functions, but it
may discount local deviations [2].

It must be noted that these two norms are just
conceptual, because they are defined in the function
domain. That is, in the function domain, it is easy
or intuitive to calculate the difference between two
functions. To calculate the deviation of the ap-
proximation from the original, it is sufficient to
measure the vertical distance between the func-
tions, as shown in Fig. 1. However, in the discrete
surface domain, there is no unique method to
measure the distance, because, according to the
authors, there can be a numerous approaches to
calculate the distance between the surfaces. Fur-
thermore, the idea of using norm-based error metric
means that we will use the distance measure as the
criteria to specify the difference between the orig—
inal surface and the approximation. This approach,
however, is not always true, because the distance
measure alone cannot describe the degree of ge-
ometric deviation exactly.

In addition, one of the goals of surface ap-
proximation is to preserve the surface features.
Therefore, there should be criteria for determining
and describing what the feature is and how to
measure it. This problem also cannot be guaranteed
by the distance measure alone.

In this work, to resolve the problems, more
additional factors are considered as the error metric.
The details about the error metric will be discussed

in the following section.

4. EDGE COLLAPSE OPERATION

As shown in the previous section, the sim-
plification algorithm performs a sequence of simple
topological operation in each simplification step. Our
algorithm is based on the half-edge collapse method
as the topological operation, which has the same
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meaning with the endpoint approach except some
implementation details. This method uses the
vertex placement policy that places a new vertex
after the collapse of directional edge (u,v) by
merging the start vertex u to the end vertex v (Fig.
2).

In addition, every edge having the vertex u is
topologically updated to have v. As another
approaches, midpoint of the two vertices of an edge
or an optimal point scheme can be chosen for the
location of new vertex after the edge collapse.
Midpoint scheme is intuitive and an unbiased
method to the positions of the two vertices.

Fig. 2. Edge collapse operation and geometric
changes of local surface.

However, the drawback of this method is that the
volume of the original object becomes smaller as
simplification steps proceed, especially for a convex
surface.

The optimal point scheme generates a new
vertex at the optimal position on the contour curve
connecting two vertices of an edge. This scheme
can create a high—quality approximation, but finding
an optimal position costs both a great deal of time
and extra memory space to store the new vertex.

On the other hand, using the method based on
half-edge collapse, there is no additional memory
burden because a new vertex is not created and
rapid calculation is possible. Moreover, in most
cases, the original shape is well preserved [11],
although the method does not use the optimal
placement policy. Another attractive point of this
method is that the progressive transmission of
mesh data [12] can be performed very effectively,

since the set of vertices in the simplified mesh is

always a proper subset of the original mesh.

5. SURFACE DEVIATION ERROR

In the simplification process, for the assessment
of geometric similarity between M; and its
descendent M;;, we need some means of
quantifying the notion of similarity. Error metric
is a measure that represents the degree of
deviation, or error, of approximation from the

original model.

E( M, Mi+1)=
Gﬂlanes( M,', Mi+1)+ leanes( Ml) (3)

The proposed algorithm defines a geometric error
metric that exploits the locality of mesh changes
before and after simplification. That is, because the
geometric changes in the simplification method
based on iterative edge reduction always happens
in adjacent areas of the edge, we can estimate the
degree of deviation by describing the local surface
appropriately. Also, we observed the degree of
geometric variation G between M; and M,.; and
geometric characteristic H of current mesh M; as
the factors for causing errors during the sim-
plification process.

Equation (3) is the combination of these two
concepts. The proposed algorithm assigns the
decimation cost calculated from the equation (3) to
every edge.

As the factors for geometric variations G
occurred when the edge is collapsed, we consider
the amount of distance and changes of surface
orientation between meshes before and after sim-
plification. They are factors for detecting the degree
of variation in the magnitude of scalar and vector
of each local surface, and they work complementary
to each other. That is, before and after sim-
plification, the degree of variation of surface ori-
entation is independent from that of scalar. There-
{fore, it is possible to control overall decimation cost

by assigning higher cost to the element when the
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reduction probability is high due to little change
in scalar but the degree of variation for orientation
is high, and vice versa.

Distance. The distance between M; and M.,
can be calculated by the sum of distance between
plane set P &) in current mesh M; and the end
vertex v of the directional edge (y,v) in de-
scendent mesh M;.; (equation (4)). It must be
noted that the equation (4) is the sum of
distance-to-plane measurement. This is similar
to [14] but the difference is that in this case only
P(u), which is the superset of P«{ &), not P(u)
P(v), is considered. The reason why the sum of
distance is used rather than maximum or average
distance is to avoid sensitive response to the

geometric noise.
D( P(e), v) (4)

Orientation. Describing the geometric variation
of local surface before and after simplification using
just the distance measure is not sufficient. In Fig.
3 (a), decimation costs based on the distance metric
of every vertex (u;~uy) are the same. The distance
between vertex v to planes, p;~ pys containing each
vertex are d. But, the amount of deviation before
and after simplification are different as shown in
(b) and (c). When the orientation variation of planes
is considered, this problem can be solved. In other
words, when decimation costs of (b) and (c) based
on distance metric are the same but the orientation
variation of (b) is comparatively larger than (c),
higher decimation cost can be assigned to (b).

A
(b)

Fig. 3. Cases when the decimation costs based on
distance metric are the same.

In the mesh M;.;, remaining planes after collapse
operation of edge (u,v) are exclusion of P( &) from
P(u), which is P;+1(&). So, estimation of
orientation variation only considers the variation
among previous planes, P« &) from M; (equation

B
Ol P(€), PulZ)) 5

Curvature. As the sub components of H, which
is another component of our error metric for
detection of the geometric features in current mesh
M;, we define both local curvature and edge'’s
length. Since the geometric features of mesh are
constructed with small sized elements, which are
concentrated in small areas, they have small
quantity of G, which is the geometric variation
before and after simplification. The component of
orientation variation O, explained in the previous
section, may be used for preserving the features
with small scalar value. This approach, however,
computes the same decimation cost for those
surface areas having different geometric charac-
teristics (Fig. 4). So, we must introduce the ad-
ditional component, such as local curvature of
current mesh M, to distinguish the areas.

Fig. 4. Cases when the decimation costs based on
G are the same.

The local curvature C is calculated by the sum
of inner product between the plane sets P(u) and
P( &), which are adjacent to start vertex u of edge
and the edge itself, respectively (equation(6)).
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Cl( P(u), P(e) ) 6)
Edge’s length. Strictly speaking, short edges

are relatively less important, since they make a low
impact on the local surface of the mesh.
Consequently, they have a low decimation cost.
This means that the length of the edge should be
considered as the additional component of error
metric. We completed the final form of our error
metric by multiplying the edge’s Euclidian length
to the summation of equation (4), (5) and (6).

6. RESULTS AND ANALYSIS

In this section, we present the experimental
results of the proposed algorithm and compare the
results with one of the representative previous
works, namely QSlim version 2.0 [1].

To test the degree of influence of each of the
previous factor on the simplified result, we
simplified each polygonal model based on the

following four criteria as shown in equation (7).

A: Distance N Edge’s-length

B: Distance N Orientation-variation

C: Curvature N Edge’s-length

D: Distance N Edge’s-length N Curvature N

Orientation—variation (7)

In the equation, A, B, C and D means the pure
scalar metric, the geometric variation before and
after simplification, the geometric characteristics
of surface before simplification and the proposed
error metric, respectively.

In Fig. 5, there are some polygonal surface
models, which are used to evaluate the performance
of the proposed algorithm. The original Cow, Spock
and Venus model is constructed with 5,804, 32,768
and 100,000 triangles, respectively.

The simplified results of these models based on
each of the metric as shown in equation (7) are
represented in Fig. 6. Simplified Cow, Spock and
Venus model is constructed with 2.8%, 0.5% and

0.3% of the original model, respectively.

Fig. 5. Polygonal surface models(Cow, Spock,
Venus).

Characteristic geometric features, as we can see,
are better preserved in the proposed error metric
(d) than in (a), (b) and (¢), and it is much closer
to the original model. Especially, the relatively high
curvature regions are excellently preserved in (d).

Fig. 7 illustrates the numerical comparison of the
simplified results with QSlim. QSlim is the rep-
resentative algorithm using edge collapse policy
based on the distance optimization. KO means the
proposed algorithm and D is the final approach in
equation (7).

For the measure of numerical accuracy, we use
the public tool, namely Metro [16]. Metro is a tool
that evaluates the difference between surfaces, i.e.
triangulated mesh and its simplified representation.
It returns the numerical results, such as maximal,
mean and mean squared errors.

As a conclusion, the visual and numerical results
indicate that the proposed error metric utilizing the
orientation of local surface works well and excel-

lently retain the original shape.

7. CONCLUSION

Current high—-speed graphics systems are capable
of rendering tens of millions of polygons almost

in real time. However, the complexity of large
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(b) B (c) C

Fig. 6. Visual simplified results.
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geometric datasets appears to be growing at a
faster rate as compared to the rendering capabilities
of the graphics systems. Using surface simpli-
fication algorithm, we can decrease or reduce the
amount of redundant data.

The goal of this study is to retain as many
characteristic features of the original model as
possible, even after drastic simplification process.
To satisfy the goal, we propose an error metric,
which can efficiently detect the geometric deviation
in the simplification process by utilizing the non-
scalar component.

In terms of the perceptual fidelity, the ex-
perimental results indicate that the proposed error
metric works well when there is a need to preserve
the high curvature regions that play an important
role to perceive the characteristic shape of an
object.
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Errors(Venus: 0.3%).
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