• Title/Summary/Keyword: local features

Search Result 1,418, Processing Time 0.023 seconds

Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition (자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템)

  • Kim, Kyeong-Tae;Choi, Jae-Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.47-55
    • /
    • 2018
  • In this paper, we propose a novel face recognition(FR) method that takes advantage of combining weighted deep local features extracted from multiple Deep Convolutional Neural Networks(DCNNs) learned with a set of facial local regions. In the proposed method, the so-called weighed deep local features are generated from multiple DCNNs each trained with a particular face local region and the corresponding weight represents the importance of local region in terms of improving FR performance. Our weighted deep local features are applied to Joint Bayesian metric learning in conjunction with Nearest Neighbor(NN) Classifier for the purpose of FR. Systematic and comparative experiments show that our proposed method is robust to variations in pose, illumination, and expression. Also, experimental results demonstrate that our method is feasible for improving face recognition performance.

Microblog User Geolocation by Extracting Local Words Based on Word Clustering and Wrapper Feature Selection

  • Tian, Hechan;Liu, Fenlin;Luo, Xiangyang;Zhang, Fan;Qiao, Yaqiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3972-3988
    • /
    • 2020
  • Existing methods always rely on statistical features to extract local words for microblog user geolocation. There are many non-local words in extracted words, which makes geolocation accuracy lower. Considering the statistical and semantic features of local words, this paper proposes a microblog user geolocation method by extracting local words based on word clustering and wrapper feature selection. First, ordinary words without positional indications are initially filtered based on statistical features. Second, a word clustering algorithm based on word vectors is proposed. The remaining semantically similar words are clustered together based on the distance of word vectors with semantic meanings. Next, a wrapper feature selection algorithm based on sequential backward subset search is proposed. The cluster subset with the best geolocation effect is selected. Words in selected cluster subset are extracted as local words. Finally, the Naive Bayes classifier is trained based on local words to geolocate the microblog user. The proposed method is validated based on two different types of microblog data - Twitter and Weibo. The results show that the proposed method outperforms existing two typical methods based on statistical features in terms of accuracy, precision, recall, and F1-score.

A Valley Operator for Extracting Sketch Features (스케치 특징의 추출을 위한 밸리 연산자)

  • 류영진;김남철
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.559-565
    • /
    • 1988
  • A new valley operator is presented for extracting sketch features which contain valleys and edges subject to local intensities. It is a very simple operator using the local probablities in a 3x3 local window. Experimental results show its excellent performance over the existing valley or edge operators.

  • PDF

Scene Recognition Using Local and Global Features (지역적, 전역적 특징을 이용한 환경 인식)

  • Kang, San-Deul;Hwang, Joong-Won;Jung, Hee-Chul;Han, Dong-Yoon;Sim, Sung-Dae;Kim, Jun-Mo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.298-305
    • /
    • 2012
  • In this paper, we propose an integrated algorithm for scene recognition, which has been a challenging computer vision problem, with application to mobile robot localization. The proposed scene recognition method utilizes SIFT and visual words as local-level features and GIST as a global-level feature. As local-level and global-level features complement each other, it results in improved performance for scene recognition. This improved algorithm is of low computational complexity and robust to image distortions.

Bio-Inspired Object Recognition Using Parameterized Metric Learning

  • Li, Xiong;Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.819-833
    • /
    • 2013
  • Computing global features based on local features using a bio-inspired framework has shown promising performance. However, for some tough applications with large intra-class variances, a single local feature is inadequate to represent all the attributes of the images. To integrate the complementary abilities of multiple local features, in this paper we have extended the efficacy of the bio-inspired framework, HMAX, to adapt heterogeneous features for global feature extraction. Given multiple global features, we propose an approach, designated as parameterized metric learning, for high dimensional feature fusion. The fusion parameters are solved by maximizing the canonical correlation with respect to the parameters. Experimental results show that our method achieves significant improvements over the benchmark bio-inspired framework, HMAX, and other related methods on the Caltech dataset, under varying numbers of training samples and feature elements.

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.

A Study on the Phoneme Segmentation of Handwritten Korean Characters by Local Graph Patterns on Contacting Points (접촉점에서의 국소 그래프 패턴에 의한 필기체 한글의 자소분리에 관한 연구)

  • 최필웅;이기영;구하성;고형화
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.1-10
    • /
    • 1993
  • In this paper, a new method of phoneme segmentation of handwritten Korean characters using the local graph pattern is proposed. At first, thinning was performed before extracting features. End-point, inflexion-point, branch-point and cross-point were extracted as features. Using these features and the angular relations between these features, local graph pattern was made. When local graph pattern is made, the of strokes is investigated on contacting point. From this process, pattern is simplified as contacting pattern of the basic form and the contacting form we must take into account can be restricted within fixed region, 4therefore phoneme segmentation not influenced by characters form and any other contact in a single character is performed as matching this local graph pattern with base patterns searched ahead. This experiments with 540 characters have been conducted. From the result of this experiment, it is shown that phoneme segmentation is independent of characters form and other contact in a single character to obtain a correct segmentation rate of 95%, manages it efficiently to reduce the time spent in lock operation when the lock.

  • PDF

Local Feature Based Facial Expression Recognition Using Adaptive Decision Tree (적응형 결정 트리를 이용한 국소 특징 기반 표정 인식)

  • Oh, Jihun;Ban, Yuseok;Lee, Injae;Ahn, Chunghyun;Lee, Sangyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.92-99
    • /
    • 2014
  • This paper proposes the method of facial expression recognition based on decision tree structure. In the image of facial expression, ASM(Active Shape Model) and LBP(Local Binary Pattern) make the local features of a facial expressions extracted. The discriminant features gotten from local features make the two facial expressions of all combination classified. Through the sum of true related to classification, the combination of facial expression and local region are decided. The integration of branch classifications generates decision tree. The facial expression recognition based on decision tree shows better recognition performance than the method which doesn't use that.

Haptic Contour Following and Feature Detection with a Contact Location Display (접촉점 표시를 통한 윤곽선 추적 및 돌기 형상 탐지)

  • Park, Jaeyoung;Provancher, William R.;Johnson, David E.;Tan, Hong Z.
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.206-216
    • /
    • 2013
  • We investigate the role of contact location information on the perception of local features during contour following in a virtual environment. An absolute identification experiment is conducted under force-alone and force-plus-contact-location conditions to investigate the effect of the contact location information. The results show that the participants identify the local features significantly better in terms of higher information transfer for the force-plus-contact-location condition, while no significant difference was found for measures of the efficacy of contour following between the two conditions. Further data analyses indicate that the improved identification of local features with contact location information is due to the improved identification of small surface features.

Projected Local Binary Pattern based Two-Wheelers Detection using Adaboost Algorithm

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • We propose a bicycle detection system riding on people based on modified projected local binary pattern(PLBP) for vision based intelligent vehicles. Projection method has robustness for rotation invariant and reducing dimensionality for original image. The features of Local binary pattern(LBP) are fast to compute and simple to implement for object recognition and texture classification area. Moreover, We use uniform pattern to remove the noise. This paper suggests that modified LBP method and projection vector having different weighting values according to the local shape and area in the image. Also our system maintains the simplicity of evaluation of traditional formulation while being more discriminative. Our experimental results show that a bicycle and motorcycle riding on people detection system based on proposed PLBP features achieve higher detection accuracy rate than traditional features.

  • PDF