• 제목/요약/키워드: local feature selection

검색결과 60건 처리시간 0.022초

차량 번호판 인식을 위한 앙상블 학습기 기반의 최적 특징 선택 방법 (An Ensemble Classifier Based Method to Select Optimal Image Features for License Plate Recognition)

  • 조재호;강동중
    • 전기학회논문지
    • /
    • 제65권1호
    • /
    • pp.142-149
    • /
    • 2016
  • This paper proposes a method to detect LP(License Plate) of vehicles in indoor and outdoor parking lots. In restricted environment, there are many conventional methods for detecting LP. But, it is difficult to detect LP in natural and complex scenes with background clutters because several patterns similar with text or LP always exist in complicated backgrounds. To verify the performance of LP text detection in natural images, we apply MB-LGP feature by combining with ensemble machine learning algorithm in purpose of selecting optimal features of small number in huge pool. The feature selection is performed by adaptive boosting algorithm that shows great performance in minimum false positive detection ratio and in computing time when combined with cascade approach. MSER is used to provide initial text regions of vehicle LP. Throughout the experiment using real images, the proposed method functions robustly extracting LP in natural scene as well as the controlled environment.

경험적 정보를 이용한 kNN 기반 한국어 문서 분류기의 개선 (Improving of kNN-based Korean text classifier by using heuristic information)

  • 임희석;남기춘
    • 컴퓨터교육학회논문지
    • /
    • 제5권3호
    • /
    • pp.37-44
    • /
    • 2002
  • 문서 자동 분류란 입력 문서에 이미 정해져 있는 특정 범주를 할당하는 작업을 의미하며 이는 문서의 효율적, 체계적 관리를 위하여 그 필요성이 증가하고 있는 실정이다. 현재 국내외에서 기계 학습 방법을 이용한 문서 자동 분류에 대한 연구가 활발히 진행되고 있으나 대부분의 연구는 문서 분류기의 성능 향상을 위한 새로운 학습 모델 제안과 학습 모델간의 상호 비교 연구에 치중되어 있으며 특정 학습 모델을 이용한 분류 시스템의 최적화나 개선 방안에 대한 연구는 다소 미흡한 실정이다. 이에 본 논문은 kNN 학습 방법을 이용한 문서 분류 시스템의 성능 향상에 중요한 역할을 하는 파라미터를 정의하고 실험을 통해서 얻은 경험적 정보를 이용한 한국어 문서 분류기 성능 개성 방안을 제안한다. 실험 결과, 이웃 문서들간의 유사도 가중치를 사용하는 분류 함수, 분류 정보를 이용한 자질 선택 방법, 그리고 전역적 분류 방법이 높은 성능을 보였고, 분류 영역에 따라 신중히 결정된 k값을 사용한 지역적 방법도 많은 계산량을 필요로 하는 전역적 방법과 유사한 성능을 보일 수 있음을 확인하였다.

  • PDF

사용자 구분에 의한 지역적 연관규칙의 유도 (Deriving Local Association Rules by User Segmentation)

  • 박세일;이수원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권1_2호
    • /
    • pp.53-64
    • /
    • 2002
  • 연관규칙 탐사기법은 트랜잭션들을 대상으로 항목간 또는 속성간의 연관관계를 발견하는 방법으로, 데이터 집합의 구조를 쉽게 통찰할 수 있다는 장점으로 인하여 활발히 연구되어 왔다. 그러나 현재까지의 연구들은 전체 사용자 중 공통적인 특성을 지닌 사용자 그룹이 존재할 경우, 이러한 그룹별 연관규칙을 찾아낼 수 없다는 한계점을 지닌다. 본 논문에서는 이러한 점을 해결하기 위하여, 속성선택 및 사용자 구분 기법을 이용하여 사용자를 부분집합으로 구분하고 그 부분집합별로 연관규칙을 발견한다. 또한 위와 같이 얻어진 지역적 연관규칙이 전체 사용자를 대상으로 한 전역적 연관규칙보다 해당 부분집합에 더욱 적합하다는 사실을 여러 연관규칙 평가치를 이용하여 평가한다.

인지증 판별 성능 향상을 위한 스펙트럼 국부 영역 분석 방법 (Local Region Spectral Analysis for Performance Enhancement of Dementia Classification)

  • 박준규;백성준
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5150-5155
    • /
    • 2011
  • 인지증을 유발하는 원인은 알츠하이머병(Alzheimer's Disease: AD)과 혈관성 인지증(vascular Dementia: VD)이 가장 높은 비율을 차지한다. 본 논문에서는 측정된 라만 스펙트럼에서 AD, VD, 정상(NOR: normal)을 분류하기 위해 변별력 있는 영역을 조사하고, 특징 변환을 이용한 분류 실험 결과를 제시하였다. 혈소판으로부터 측정한 라만 스펙트럼은 먼저 smoothing을 적용한 다음 배경 잡음을 제거하고 스펙트럼의 기준 피크를 중심으로 그 위치를 정렬하였고 minmax 방법을 사용하여 정규화 하였다. 전처리를 거친 스펙트럼은 AD와 VD, NOR를 변별하기 가장 용이한 영역을 결정하기 위해 조사되었으며, 그 결과 725-777, 1504-1592, 1632-1700 $cm^{-1}$ 영역에서 스펙트럼이 많은 차이를 보임을 확인하였다. 분류 실험은 선택한 각 영역에 대하여 PCA(principal component analysis)와 NMF(nonnegative matrix factorization) 방법을 적용하여 얻은 특징을 이용하여 행하였다. 총 327개의 라만 스펙트럼에 대한 MAP(maximum a posteriori probability) 분류 실험 결과에 따르면, 본 연구에서 제안된 국부 영역 변환 특징을 사용했을 때 평균 92.8 %의 분류율을 보임을 알 수 있었다.

Adaptive Cooperative Spectrum Sensing Based on SNR Estimation in Cognitive Radio Networks

  • Ni, Shuiping;Chang, Huigang;Xu, Yuping
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.604-615
    • /
    • 2019
  • Single-user spectrum sensing is susceptible to multipath effects, shadow effects, hidden terminals and other unfavorable factors, leading to misjudgment of perceived results. In order to increase the detection accuracy and reduce spectrum sensing cost, we propose an adaptive cooperative sensing strategy based on an estimated signal-to-noise ratio (SNR). Which can adaptive select different sensing strategy during the local sensing phase. When the estimated SNR is higher than the selection threshold, adaptive double threshold energy detector (ED) is implemented, otherwise cyclostationary feature detector is performed. Due to the fact that only a better sensing strategy is implemented in a period, the detection accuracy is improved under the condition of low SNR with low complexity. The local sensing node transmits the perceived results through the control channel to the fusion center (FC), and uses voting rule to make the hard decision. Thus the transmission bandwidth is effectively saved. Simulation results show that the proposed scheme can effectively improve the system detection probability, shorten the average sensing time, and has better robustness without largely increasing the costs of sensing system.

이진영상처리를 위한 다기능 프로세서 장치구현에 관한 연구 (A Study on the Multi-function Processor Unit Implementation for Binary Image Processing)

  • 기재조;허윤석;이대영
    • 한국통신학회논문지
    • /
    • 제18권7호
    • /
    • pp.970-979
    • /
    • 1993
  • 본 논문에서는 이진영상처리를 위한 다기능 프로세서를 구현하였다. 프로세서는 주소 발생부, 윈도우 파이프 라인, 룩-업 테이블, 제어부, 2개의 메모리부로 구성하였다. 본 프로세서는 기존의 SAP(Serial Array Processor)설계 기법과 비교하여 구조가 단순하며 처리속도가 향상되었다. 또한 간단한 소프트웨어 선택에 의해서 영상크기를 선정하며 윤곽검출, 특징점 추출, 세선화, 평활화등의 기능을 선택적 또는 순차적으로 수행 가능하도록 하였다.

  • PDF

Extraction of Geometric Primitives from Point Cloud Data

  • Kim, Sung-Il;Ahn, Sung-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2010-2014
    • /
    • 2005
  • Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering, computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting. The newly developed algorithms for orthogonal distance fitting (ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. Curvature analysis of the local quadric surfaces fitted to small patches of point cloud provides the necessary seed information for automatic model selection, point segmentation, and model fitting. The performance of the software on a variety of point cloud data will be demonstrated live.

  • PDF

Zernike 모멘트 기반의 회전 불변 홍채 인식 (Rotation-Invariant Iris Recognition Method Based on Zernike Moments)

  • 최창수;서정만;전병민
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.31-40
    • /
    • 2012
  • 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 머리의 기울어짐 등으로 인해 발생될 수 있는 홍채 패턴의 변화에 대해 무관한 특징을 추출하는 것은 중요한 과제이다. 본 논문에서는 Zernike Moment를 이용해 홍채의 회전에 강인한 홍채 인식 방법을 제안하였다. 빠르고 효과적인 인식을 위한 Zernike Moment를 선택하기 위해 전역 최적 차수를 이용하였고, 각각의 홍채 클래스와 매칭하기 위하여 국소 최적 차수를 사용 하였다. 제안된 방법은 특징 추출 및 특징 비교 시 회전에 대해 별도의 처리가 필요하지 않아 고속의 특징 추출 및 특징 비교가 가능하며 성능도 기존의 방법과 대등함을 실험을 통하여 확인하였다.

유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용 (Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating)

  • 안현철
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.161-177
    • /
    • 2014
  • 기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.

Segmented Douglas-Peucker Algorithm Based on the Node Importance

  • Wang, Xiaofei;Yang, Wei;Liu, Yan;Sun, Rui;Hu, Jun;Yang, Longcheng;Hou, Boyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1562-1578
    • /
    • 2020
  • Vector data compression algorithm can meet requirements of different levels and scales by reducing the data amount of vector graphics, so as to reduce the transmission, processing time and storage overhead of data. In view of the fact that large threshold leading to comparatively large error in Douglas-Peucker vector data compression algorithm, which has difficulty in maintaining the uncertainty of shape features and threshold selection, a segmented Douglas-Peucker algorithm based on node importance is proposed. Firstly, the algorithm uses the vertical chord ratio as the main feature to detect and extract the critical points with large contribution to the shape of the curve, so as to ensure its basic shape. Then, combined with the radial distance constraint, it selects the maximum point as the critical point, and introduces the threshold related to the scale to merge and adjust the critical points, so as to realize local feature extraction between two critical points to meet the requirements in accuracy. Finally, through a large number of different vector data sets, the improved algorithm is analyzed and evaluated from qualitative and quantitative aspects. Experimental results indicate that the improved vector data compression algorithm is better than Douglas-Peucker algorithm in shape retention, compression error, results simplification and time efficiency.