• 제목/요약/키워드: local energy minimization

검색결과 24건 처리시간 0.022초

Mode I crack propagation analisys using strain energy minimization and shape sensitivity

  • Beatriz Ferreira Souza;Gilberto Gomes
    • Structural Engineering and Mechanics
    • /
    • 제92권1호
    • /
    • pp.99-110
    • /
    • 2024
  • The crack propagation path can be considered as a boundary problem in which the crack advances towards the interior of the domain. Consequently, this poses an optimization problem wherein the local crack-growth direction angle can be treated as a design variable. The advantage of this approach is that the continuous minimization of strain energy naturally leads to the mode I propagation path. Furthermore, this procedure does not rely on the precise characterization of the stress field at the crack tip and is independent of stress intensity factors. This paper proposes an algorithm based on internal point exploration as well as shape sensitivity optimization and strain energy minimization to determine the crack propagation direction. To implement this methodology, the algorithm utilizes a modeling GUI associated with an academic analysis program based on the Dual Boundary Elements Method and determines the propagation path by exploiting the elastic strain energy at points in the domain that are candidates to be included in the boundary. The sensitivity of the optimal solution is also assessed in the vicinity of the optimum point, ensuring the stability and robustness of the solution. The results obtained demonstrate that the proposed methodology accurately predicts the crack propagation direction in Mode I opening for a single crack (lateral and central). Furthermore, robust optimal solutions were achieved in all cases, indicating that the optimal solution was not highly sensitive to changes in the design variable in the vicinity of the optimal point.

A quasistatic crack propagation model allowing for cohesive forces and crack reversibility

  • Philip, Peter
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.31-44
    • /
    • 2009
  • While the classical theory of Griffith is the foundation of modern understanding of brittle fracture, it has a number of significant shortcomings: Griffith theory does not predict crack initiation and path and it suffers from the presence of unphysical stress singularities. In 1998, Francfort and Marigo presented an energy functional minimization method, where the crack (or its absence) as well as its path are part of the problem's solution. The energy functionals act on spaces of functions of bounded variations, where the cracks are related to the discontinuity sets of such functions. The new model presented here uses modified energy functionals to account for molecular interactions in the vicinity of crack tips, resulting in Barenblatt cohesive forces, such that the model becomes free of stress singularities. This is done in a physically consistent way using recently published concepts of Sinclair. Here, for the consistency of the model, it becomes necessary to allow for crack reversibility and to consider local minimizers of the energy functionals. The latter is achieved by introducing different time scales. The model is solved in its global as well as in its local version for a simple one-dimensional example, showing that local minimization is necessary to yield a physically reasonable result.

Heuristic Algorithms for Optimization of Energy Consumption in Wireless Access Networks

  • Lorincz, Josip;Capone, Antonio;Begusic, Dinko
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권4호
    • /
    • pp.626-648
    • /
    • 2011
  • Energy consumption of wireless access networks is in permanent increase, which necessitates development of more energy-efficient network management approaches. Such management schemes must result with adaptation of network energy consumption in accordance with daily variations in user activity. In this paper, we consider possible energy savings of wireless local area networks (WLANs) through development of a few integer linear programming (ILP) models. Effectiveness of ILP models providing energy-efficient management of network resources have been tested on several WLAN instances of different sizes. To cope with the problem of high computational time characteristic for some ILP models, we further develop several heuristic algorithms that are based on greedy methods and local search. Although heuristics obtains somewhat higher results of energy consumption in comparison with the ones of corresponding ILP models, heuristic algorithms ensures minimization of network energy consumption in an amount of time that is acceptable for practical implementations. This confirms that network management algorithms will play a significant role in practical realization of future energy-efficient network management systems.

윤활유 개선을 통한 에너지 절감 동향 (Overviews on Energy Savings through Lubrication Improvements)

  • 이안성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.107-114
    • /
    • 2000
  • As one of the strategies to sustain the maximum output with the total minimum cost, huge plants worldwide, such as steel mills, refineries, petrochemical plants, and etc., may and will plan and implement the minimization of operating and maintenance costs for their own. This paper is to review the foreign cases of energy savings through lubrication improvements as one of the actions for that purpose and summarize their directions, and also to look at one such local test case.

  • PDF

Adaptive Color Snake Model for Real-Time Object Tracking

  • Seo, Kap-Ho;Jang, Byung-Gi;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.740-745
    • /
    • 2003
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.

  • PDF

적층 쾌속조형 시스템을 위한 시뮬레이티드 어닐링 경사절단 알고리즘 (A Simulated Annealing Tangential Cutting Algorithm for Lamination Rapid Prototyping System)

  • 김명숙;엄태준;김승우;천인국;공용해
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권4호
    • /
    • pp.226-234
    • /
    • 2004
  • A rapid Prototyping system that laser-cuts and laminates thick layers can fabricate 3D objects promptly with a variety of materials. Building such a system must consider the surface distortions due to both vertical-cut layers and triangular surfaces. We developed a tangential layer-cutting algorithm by rearranging tangential lines such that they reconstruct 3D surfaces more closely and also constitute smoother laser trajectories. An energy function that reflects the surface-closeness with the tangential lines was formulated and then the energy was minimized by a gradient descent method. Since this simple method tends to cause many local minima for complex 3D objects, we tried to solve this problem by adding a simulated annealing process to the proposed method. To view and manipulate 3D objects, we also implemented a 3D visual environment. Under this environment, experiments on various 3D objects showed that our algorithm effectively approximates 3D surfaces and makes laser-trajectory feasibly smooth.

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.

Ferroelastic Domain Wall Motions in Lead Zirconate Titanate Under Compressive Stress Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.546-550
    • /
    • 2017
  • Ferroelectric properties are governed by domain structures and domain wall motions, so it is of significance to understand domain evolution processes under mechanical stress. In the present study, in situ piezoresponse force microscopy (PFM) observation under compressive stress was carried out for a near-morphotropic PZT. Both $180^{\circ}$ and $non-180^{\circ}$ domain structures were observed from PFM images, and their habit planes were identified using electron backscatter diffraction in conjunction with PFM data. By externally applied mechanical stress, needle-like $non-180^{\circ}$ domain patterns were broadened via domain wall motions. This was interpreted via phenomenological approach such that the total energy minimization can be achieved by domain wall motion rather than domain nucleation mainly due to the local gradient energy. Meanwhile, no motion was observed from curvy $180^{\circ}$ domain walls under the mechanical stress, validating that $180^{\circ}$ domain walls are not directly influenced by mechanical stress.

자동조립에서 시뮬레이트 어닐링을 이용한 조립순서 최적화 (Geneation of Optimized Robotic Assembly Sequences Via Simulated Annealing Method)

  • 홍대선;조형석
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.213-221
    • /
    • 1996
  • An assembly sequence is considered to be optimal when is minimizes assembly cost while satisfying assembly constraints. To derive such an optimal sequence for robotic assembly, this paper proposes a method using a simulated annealing algorithm. In this method, an energy funciton is derived inconsideration of both the assembly constraints and the assembly cost. The energy function thus derived is iteratively minimized until no further change in energy occurs. During the minimization, the energy is occationally perturbed probabilistically in order to escape from local minima. The minimized energy yields an optimal assembly sequence. To show the effectiveness of the proposed method, case studies are presented for industrial products such as an electrical relay and an automobil alternator. The performance is analyzed by comparing the results with those of a neural network-based method, based upon the optimal solutions of an expert system.

Local zooming genetic algorithm and its application to radial gate support problems

  • Kwon, Young-Doo;Jin, Seung-Bo;Kim, Jae-Yong;Lee, Il-Hee
    • Structural Engineering and Mechanics
    • /
    • 제17권5호
    • /
    • pp.611-626
    • /
    • 2004
  • On the basis of a structural analysis of radial gate (i.e. Tainter gate), the current paper focuses on weight minimization according to the location of the arms on a radial gate. In spite of its economical significance, there are hardly any previous studies on the optimum design of radial gate. Accordingly, the present study identifies the optimum position of the support point for a radial gate that guarantees the minimum weight satisfying the strength constraint conditions. This study also identifies the optimum position for 2 or 3 radial arms with a convex cylindrical skin plate relative to a given radius of the skin plate curvature, pivot point, water depth, ice pressure, etc. These optimum designs are then compared with previously constructed radial gates. Local genetic and hybrid-type genetic algorithms are used as the optimum tools to reduce the computing time and enhance the accuracy. The results indicate that the weights of the optimized radial gates are appreciably lower than those of previously constructed gates.