• 제목/요약/키워드: local endomorphism ring

검색결과 4건 처리시간 0.016초

LOCAL SPLITTING PROPERTIES OF ENDOMORPHISM RINGS OF PROJECTIVE MODULES

  • Lee, Sang Cheol
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.747-755
    • /
    • 2013
  • This paper deals with the unit groups of the endomorphism rings of projective modules over polynomial rings and further over formal power series rings. A normal subgroup of the unit group is defined and discussed. The local splitting properties of element of endomorphism rings of projective modules over polynomial rings are given.

A NOTE ON ENDOMORPHISMS OF LOCAL COHOMOLOGY MODULES

  • Mahmood, Waqas;Zahid, Zohaib
    • 대한수학회보
    • /
    • 제54권1호
    • /
    • pp.319-329
    • /
    • 2017
  • Let I denote an ideal of a Noetherian local ring (R, m). Let M denote a finitely generated R-module. We study the endomorphism ring of the local cohomology module $H^c_I(M)$, c = grade(I, M). In particular there is a natural homomorphism $$Hom_{\hat{R}^I}({\hat{M}}^I,\;{\hat{M}}^I){\rightarrow}Hom_R(H^c_I(M),\;H^c_I(M))$$, $where{\hat{\cdot}}^I$ denotes the I-adic completion functor. We provide sufficient conditions such that it becomes an isomorphism. Moreover, we study a homomorphism of two such endomorphism rings of local cohomology modules for two ideals $J{\subset}I$ with the property grade(I, M) = grade(J, M). Our results extends constructions known in the case of M = R (see e.g. [8], [17], [18]).

ON THE DECOMPOSITION OF EXTENDING LIFTING MODULES

  • Chang, Chae-Hoon;Shin, Jong-Moon
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1069-1077
    • /
    • 2009
  • In 1984, Oshiro [11] has studied the decomposition of continuous lifting modules. He obtained the following: every continuous lifting module has an indecomposable decomposition. In this paper, we study extending lifting modules. We show that every extending lifting module has an indecomposable decomposition. This result is an expansion of Oshiro's result mentioned above. And we consider some application of this result.

X-LIFTING MODULES OVER RIGHT PERFECT RINGS

  • Chang, Chae-Hoon
    • 대한수학회보
    • /
    • 제45권1호
    • /
    • pp.59-66
    • /
    • 2008
  • Keskin and Harmanci defined the family B(M,X) = ${A{\leq}M|{\exists}Y{\leq}X,{\exists}f{\in}Hom_R(M,X/Y),\;Ker\;f/A{\ll}M/A}$. And Orhan and Keskin generalized projective modules via the class B(M, X). In this note we introduce X-local summands and X-hollow modules via the class B(M, X). Let R be a right perfect ring and let M be an X-lifting module. We prove that if every co-closed submodule of any projective module P contains Rad(P), then M has an indecomposable decomposition. This result is a generalization of Kuratomi and Chang's result [9, Theorem 3.4]. Let X be an R-module. We also prove that for an X-hollow module H such that every non-zero direct summand K of H with $K{\in}B$(H, X), if $H{\oplus}H$ has the internal exchange property, then H has a local endomorphism ring.