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ON THE DECOMPOSITION OF
EXTENDING LIFTING MODULES

Chaehoon Chang and Jongmoon Shin

Abstract. In 1984, Oshiro [11] has studied the decomposition of contin-
uous lifting modules. He obtained the following: every continuous lifting
module has an indecomposable decomposition. In this paper, we study
extending lifting modules. We show that every extending lifting module
has an indecomposable decomposition. This result is an expansion of Os-
hiro’s result mentioned above. And we consider some application of this
result.

1. Introduction

From 1958 to 1959, Matlis and Papp studied injective modules over right noe-
therian rings and they showed the following result: a ring R is right noetherian
if and only if every injective R-module has an indecomposable decomposition.
As an improved version of this result, in 1982, the following was shown by
Müller-Rizvi: a ring R is right noetherian if and only if every continuous R-
module has an indecomposable decomposition. Furthermore, in 1984, Okado
showed the following result: a ring R is right noetherian if and only if every
extending R-module has an indecomposable decomposition (cf. [8]).

On the other hand, in 1972, the result of projective modules over right
perfect rings have an indecomposable decomposition was shown by Anderson-
Fuller. In 1983, Oshiro showed the following result: every quasi-discrete module
has an indecomposable decomposition. In addition, recently Kuratomi-Chang
proved that lifting modules over right perfect rings have an indecomposable
decomposition. Recently Chang showed that if every co-closed submodule of
any projective module P contains Rad(P ), then every X-lifting module over a
right perfect ring has an indecomposable decomposition (cf. [1, 3, 7, 12]).

Also, quasi-injective modules, continuous modules, and projective modules
over perfect rings have the exchange property. And, in 1993, Mohamed-Müller
showed that continuous modules have the exchange property and, for nonsingu-
lar quasi-continuous modules, the finite exchange property implies the exchange
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property. Dually, in 1996, Oshiro-Rizvi proved that discrete modules have the
exchange property and, for quasi-discrete modules, the finite exchange property
implies the exchange property (cf. [1, 4, 8, 9]).

2. Preliminaries

Throughout this article all rings are associative and R will always denote a
ring with unity. Modules are unital right R-modules unless indicated otherwise.

Let M be a module and let K be a submodule of M . K is called an essential
submodule of M (or M is an essential extension of K) if K ∩ L 6= 0 for any
non-zero submodule L of M . In this case we denote K ⊆e M . Dually, a
submodule K of M is called a small submodule (or superfluous submodule)
of M , abbreviated K ¿ M , in the case when, for every submodule L ⊆ M ,
K + L = M implies L = M .

Let N1 ⊆ N2 ⊆ M . N1 is a co-essential (or cosmall) submodule of N2 in
M , abbreviated N1 ⊆c N2 in M , if N2/N1 ¿ M/N1. A submodule N of M
is said to be co-closed in M (or a co-closed submodule of M), if N has no
proper co-essential submodule in M , i.e., N ′ ⊆c N in M implies N = N ′. Let
N1 ⊆ N2 ⊆ M . N1 is said to be a co-closure of N2 in M if N1 is a co-closed
submodule of M with N1 ⊆c N2 in M .

A module M is said to be extending (or CS) if, any submodule A of M , there
exists a direct summand A∗ of M such that A ⊆e A∗ in M . Dually, a module
M is said to be lifting if, any submodule A of M , there exists a direct summand
A∗ of M such that A∗ ⊆c A in M . The module M is called continuous if M is
extending and satisfies the following condition:

(C2) If a submodule X of M is isomorphic to a direct summand of M , then
X is a direct summand of M .

The module M is called quasi-continuous if M is extending and satisfies the
following condition:

(C3) If M1 and M2 are direct summands of M such that M1 ∩M2 = 0, then
M1 ⊕M2 is a direct summand of M .

Let M be a module and let N and L be submodules of M . N is called a
supplement of L if M = N + L and N ∩ L ¿ N . Note that any supplement
submodule (hence any direct summand) of a module M is co-closed in M .
Following [4], a module M is amply supplemented if, for any submodules A, B
of M with M = A + B there exists a supplement P of A such that P ⊆ B. A
module M is supplemented if every submodule of M has a supplement.

For a module M , we use EndR(M), K <⊕ M , and Rad(M) to denote the
endomorphism ring, direct summand, and Jacobson radical of M , respectively.

For a module M and an index set I, we denote by M (I) the direct sum of I
copies of M .

For undefined terms, the reader is referred to [1, 4, 8].

Remark 2.1 (cf. [4, 8]). It is well-known that the following implications hold
for a module:
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(a) injective ⇒ quasi-injective ⇒ continuous ⇒ quasi-continuous ⇒ extend-
ing.

(b) projective ⇒ quasi-projective ; discrete ⇒ quasi-discrete ⇒ lifting ⇒
amply supplemented ⇒ supplemented.

Lemma 2.2 (cf. [4, 20.22]). Every factor module of a (amply) supplemented
module is (amply) supplemented.

∑⊕λ∈ΛXλ ⊆ X is called a local summand of X if
∑⊕λ∈F Xλ <⊕ X for

every finite subset F ⊆ Λ.
The following lemma is useful.

Lemma 2.3 (cf. [11, Lemma 2.4]). If every local summand of M is a direct
summand, then M has an indecomposable decomposition.

Lemma 2.4. Let M be an amply supplemented module and let f : M → N be
an isomorphism. If K is co-closed in M , then f(K) is co-closed in N .

Proof. Since M is amply supplemented, there exists a supplement submodule
L of K in M . Since N = f(M) is amply supplemented, there is a co-closure T

of f(K) in N . Then there exists a submodule K
′

of K such that f(K
′
) = T .

This implies that N = f(M) = f(L)+f(K) = f(L)+T = f(L)+f(K
′
). Thus

M = L + K
′
+ ker f . By [7, Lemma 1.5], K

′ ⊆c K in M . Since K is co-closed
in M , K = K

′
. Hence f(K) = f(K

′
) = T is co-closed in N . ¤

A module M is said to have the (finite) exchange property if, for any (finite)
index set I, whenever M ⊕N = ⊕IAi for modules N and Ai, then M ⊕N =
M ⊕ (⊕IBi) for submodules Bi ⊆ Ai. A module M has the (finite) internal
exchange property if, for any (finite) direct sum decomposition M = ⊕IMi

and any direct summand X of M , there exist submodules Mi ⊆ Mi such
that M = X ⊕ (⊕IMi). A decomposition M = ⊕AMα of a module M as
a direct sum of non-zero submodules (Mα)α∈A is said to complement direct
summands if, for every direct summand K of M , there is a subset B ⊆ A with
M = (⊕BMβ)⊕K.

Lemma 2.5. Let M be a module and let M = ⊕ΛMλ be an indecomposable
decomposition. Then the following are equivalent:

(i) The decomposition M = ⊕ΛMλ complement direct summands;
(ii) M = ⊕ΛMλ has the internal exchange property.

Proof. (ii) =⇒ (i) is obvious. (i) =⇒ (ii) Let M = ⊕INi and let X be a
direct summand of M . For Ni <⊕ M , by assumption, there is a direct sum
decomposition M = Ni⊕ (⊕Λ′Mλ), where Λ

′ ⊆ Λ. Thus Ni ' ⊕Λ−Λ′Mλ. Put

Λi = Λ− Λ
′
. Then M = ⊕INi

f' ⊕I(⊕ΛiMα). Hence M = ⊕I(⊕Λif
−1(Mα)),

where ⊕Λif
−1(Mα) = Ni. By [1, Corollary 12.5], M = ⊕I(⊕Λif

−1(Mα))
complement direct summands. Therefore M = X⊕ [⊕I(⊕Λi

′ f−1(Mα))], where

Λi

′ ⊆ Λi. Put Ni = ⊕Λi
′ f−1(Mα). Then M = X ⊕ (⊕INi). Hence M has the

internal exchange property. ¤
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Proposition 2.6 (cf. [4, Corollary 11.14]). Let M be a module. Then the
following are equivalent:

(i) M has the finite exchange property;
(ii) For any finite subset {f1, . . . , fn} ⊆ EndR(M) with

∑n
i=1 fi = 1,

there exist orthogonal idempotents e1, . . . , en ∈ EndR(M) with ei ∈
fiEndR(M), for each i and

∑n
i=1 ei = 1;

(iii) For any f ∈ EndR(M), there exists an idempotent e ∈ fEndR(M) with
1− e ∈ (1− f)EndR(M).

Let A and B be modules. A is said to be generalized B-injective (or B-
ojective) if, for any submodule X of B and any homomorphism f : X → A,
there exist decompositions A = A1 ⊕ A2, B = B1 ⊕ B2, a homomorphism
h1 : B1 → A1 and a monomorphism h2 : A2 → B2, and for x = b1 + b2

and f(x) = a1 + a2 one has a1 = h1(b1) and b2 = h2(a2). As the dual
notion of generalized relative injective modules, A is said to be generalized B-
projective (or B-dual ojective) if, for any homomorphism f : A → X and any
epimorphism g : B → X, there exist decompositions A = A1⊕A2, B = B1⊕B2,
a homomorphism h1 : A1 → B1, and an epimorphism h2 : B2 → A2 such that
g ◦ h1 = f |A1 and f ◦ h2 = g |B2 (cf. [4] or [6]).

Proposition 2.7 (cf. [4, 4.42]). Let M = A ⊕ B. Then A is generalized B-
projective if and only if whenever M = X + B, we have M = X∗ ⊕A∗ ⊕B∗ =
X∗ + B with X∗ ⊆ X, A∗ ⊆ A and B∗ ⊆ B.

Proposition 2.8 (cf. [4, 4.43]). Let B∗ be a direct summand of B. If A is
generalized B-projective, then A is generalized B∗-projective.

We recall that a non-zero module U is called uniform if it is indecomposable
extending. Dually, a module H is called hollow if it is indecomposable lifting.

Lemma 2.9 (cf. [6, Theorem 3.7], [10, Corollary 21]). Let H be a hollow
module and let U be a uniform module. Then the following hold:

(i) H⊕H is lifting with the (finite) internal exchange property if and only
if H is generalized H-projective;

(ii) U ⊕ U is extending with the (finite) internal exchange property if and
only if U is generalized U -injective.

3. Results

In 1984, Oshiro [11, Lemma 2.5] showed the following: every continuous
lifting module has an indecomposable decomposition. On the other hand, in
2007, Kuratomi-Chang [7, Theorem 3.10] obtained the following:

(a) every lifting module over a right perfect ring has an indecomposable
decomposition.

(b) for a lifting module over a right perfect ring, the finite exchange property
implies the exchange property.

In this section, we consider the following problems:
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Problem 1. Does any extending lifting module have an indecomposable
decomposition?

Problem 2. Does any extending lifting module have the exchange property?
Since every quasi-discrete module has an indecomposable decomposition,

every discrete module has an indecomposable decomposition. Now we give a
direct proof of this result.

Proposition 3.1. Every discrete module can be expressed as a direct sum of
indecomposable modules.

Proof. Let M be a discrete module and let N =
∑⊕IMi be a local summand

of M . Since M is lifting, there exists a direct sum decomposition M = A⊕B
such that A ⊆c N in M . Then N = A ⊕ (N ∩ B) and N ∩ B ¿ M . As
N/(N ∩ B) ' A and M is discrete, N ∩ B <⊕ M . Hence N ∩ B = 0, as
required. ¤

We show the following theorem.

Theorem 3.2. Every local summand of an extending lifting module is a direct
summand.

Proof. Let M be an extending lifting module and let N =
∑⊕IMi be a local

summand of M . Since M is lifting, there exists a direct sum decomposition
M = A⊕B such that A ⊆c N in M . Then we see

(3.1) N = A⊕ (N ∩B), N ∩B ¿ M.

Assume 0 6= x ∈ N ∩ B. Then there exists a finite subset K of I such
that x ∈ ∑⊕KMk. By hypothesis,

∑⊕KMk is a direct summand of M .
Since M is extending,

∑⊕KMk is extending. Hence there exists a direct sum
decomposition

∑⊕KMk = T ⊕ T ∗ such that xR ⊆e T in
∑⊕KMk. Since

xR∩A = 0, we see T ∩A = 0. Thus N ∩B contains a submodule C isomorphic
to T . Since C ⊆ N ∩B ¿ M , C ¿ M . As C ' T and T is co-closed in M , by
Lemma 2.4, C is co-closed in M . Since M is amply supplemented, C <⊕ M ,
which contradicts to C ¿ M . Therefore N ∩B = 0, as required. ¤

By Lemma 2.3 and Theorem 3.2, we obtain the first main theorem.

Theorem 3.3. Every extending lifting module has an indecomposable decom-
position.

Example 3.4. Let D be a division ring. Consider the upper triangular matrix
ring

R =




D D . . . D
0 D . . . D
...

. . . . . .
...

0 . . . 0 D
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of n × n matrices over D. Then R is artinian and R can be expressed as
R = e11R⊕· · ·⊕ennR, where {eii}n

i=1 is a complete set of orthogonal primitive
idempotents of R and

e11 =




1 0 . . . 0
0 0 . . . 0
...

. . . . . .
...

0 . . . 0 0


 , e22 =




0 0 . . . 0
0 1 . . . 0
...

. . . . . .
...

0 . . . 0 0


 , . . . , enn =




0 0 . . . 0
...

. . . . . .
...

0 . . . 0 0
0 . . . 0 1


 .

Furthermore,

J(R) =




0 D . . . D
...

. . . . . .
...

0 . . . 0 D
0 . . . 0 0


 , eiiJ(R) =




0 . . . . . . . . . 0
...
0 D . . . D
...
0 . . . . . . . . . 0




and each eiiJ(R) has a unique composition series. Hence R is a generalized
uniserial ring. Let M be an extending (or lifting) module. First we assume that
M is extending. Then M is lifting by [4, 29.7]. Hence M has an indecomposable
decomposition. Next we assume that M is lifting. Since R is generalized
uniserial, R is right perfect. Then there exists a direct sum decomposition
M = ⊕IMi, where Mi is hollow by [7, Theorem 3.4]. Furthermore, M is
extending.

Recall that a module H is called local if it is hollow and Rad(H) is small in
H.

By Remark 2.1(b) and Theorem 3.3, we get the following two corollaries:

Corollary 3.5. Every finitely generated extending lifting module can be ex-
pressed as a direct sum of local modules.

Corollary 3.6 (cf. [11, Lemma 2.5]). Every (quasi-)continuous lifting module
has an indecomposable decomposition.

Lemma 3.7 (cf. [13, Proposition 1]). Let H be a uniform (or hollow) module.
If H⊕H has the internal exchange property, then H has a local endomorphism
ring.

Proof. First assume that H is a uniform module. Suppose that EndR(H) is
not local. Then there exist non-units f, g ∈ EndR(H) such that 1 = f − g.
Let πi : M = H1 ⊕ H2 → Hi be a projection, where Hi = H, (i = 1, 2).
Define a map (f, g) : H → H1 ⊕ H2 by x Ã (f(x), g(x)). Then (f, g) is an
R-homomorphism. Put Im f = H

′
. Define a map (1H , 1H) : H → H1 ⊕ H2

by x Ã (x, x). Put Im (1H , 1H) = K. Then M = H
′ ⊕K. Since M has the

internal exchange property, we see

(3.2) M = H
′ ⊕H1 ⊕H2, Hi ⊆ Hi, (i = 1, 2).
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Since Hi is uniform, either M = H
′ ⊕ H1 or M = H

′ ⊕ H2. If M =

H
′ ⊕ H1 = H2 ⊕ H1, then H

′ π2|H
′

' H2. Moreover, (f, g) : H → H
′

is an

isomorphism. Hence H
(f,g)' H

′ π2|H
′

' H2. Therefore g is an automorphism,
which contradicts to g is not-unit. If M = H

′⊕H2, then by the same argument,
f is an automorphism, which contradicts to f is not-unit. Thus H has a local
endomorphism ring.

Next assume that H is a hollow module. By the same argument as above,
we see that H has a local endomorphism ring. ¤

By [8, Theorem 2.25], Theorems 3.2, 3.3, and Lemma 3.7, we obtain the
following corollary.

Corollary 3.8. Let M be an extending lifting module. Then M has the ex-
change property if and only if every uniform hollow summand of M has a local
endomorphism ring.

Proof. Assume that M has the exchange property. Let H be a unform hollow
submodule of M such that H <⊕ M . Then H ⊕H has the exchange property.
By Lemma 3.7, H has a local endomorphism ring. Conversely, assume that
every uniform hollow summand of M has a local endomorphism ring. By
hypothesis and Theorem 3.3, there exists a direct sum decomposition M =
⊕IMi, where each Mi has a local endomorphism ring. By Theorem 3.2 and [8,
Theorem 2.25], M has the exchange property. ¤

By Corollary 3.8, Lemmas 2.5, 2.9, and 3.7, we obtain the second main
theorem.

Theorem 3.9. Let M be an extending lifting module and let M = ⊕IMi be a
decomposition with each Mi is a uniform hollow module satisfying one of the
following:

(i) M is generalized M -projective and M ⊕M is amply supplemented;
(ii) M is generalized M -injective;
(iii) M has the finite exchange property;
(iv) M ⊕M has the finite internal exchange property;
(v) The decomposition M = ⊕IMi complement direct summands.

Then M has the exchange property.

Proof. (ii), (iv), and (v) follow from Lemmas 2.5, 2.9, 3.7, and Corollary 3.8.
We may show only (i) and (iii).

(i) Let M = Mi ⊕ (⊕I−{i}Mi). Now we put N = Mi ⊕ (⊕IMi). First we
show that Mi is generalized ⊕IMi-projective.

Assume that N = X + (⊕IMi). By Lemma 2.2, N is amply supplemented.
Thus ⊕IMi has a supplement Y in N with Y ⊆ X. Then we see

(3.3) M ⊕M = [(⊕I−{i}Mi)⊕ Y ] + (⊕IMi).
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It is easy to see that [(⊕I−{i}Mi) + Y ] ∩ (⊕IMi) = Y ∩ (⊕IMi). Therefore
(⊕I−{i}Mi)⊕Y is a supplement of ⊕IMi. Since M is generalized M -projective
and (⊕I−{i}Mi)⊕ Y is a supplement of ⊕IMi, by Proposition 2.7, we have

M ⊕M = [(⊕I−{i}Mi)⊕ Y ]⊕M ⊕M

= [(⊕I−{i}Mi)⊕ Y ] + (⊕IMi), M,M ⊆ M.(3.4)

Consider the projection πMi
: ⊕IMi → Mi. Then (⊕I−{i}Mi) ⊕ M =

(⊕I−{i}Mi)⊕ πMi(M). This implies that

(3.5) M ⊕M = (⊕I−{i}Mi)⊕ (Y ⊕ πMi(M)⊕M).

Thus N = Y ⊕πMi(M)⊕M with Y ⊆ X, πMi(M) ⊆ M and M ⊆ M . Hence
Mi is generalized ⊕IMi-projective. By Proposition 2.8, Mi is generalized Mi-
projective. By Lemmas 2.9(i), 3.7, and Corollary 3.8, M has the exchange
property.

(iii) By assumption, each Mi has the finite exchange property. Assume that
EndR(Mi) is not local. Then there exists an f ∈ EndR(Mi) such that both
f and 1 − f are non-isomorphisms of Mi. Since Mi has the finite exchange
property, by Proposition 2.6, for any f ∈ EndR(Mi), there is an idempotent
g ∈ EndR(Mi) such that g ∈ fEndR(Mi) and 1− g ∈ (1− f)EndR(Mi). As g
is either 0Mi or 1Mi , f or 1− f is right invertible. Hence f or 1− f is a unit.
This is a contradiction. ¤

The following corollary is a direct consequence of Theorem 3.9.

Corollary 3.10 (cf. [4]). Let M be a quasi-continuous lifting module. Suppose
that M has the finite exchange property. Then M has the exchange property.

Recently Er has studied infinite direct sums of lifting modules. He showed
the following:

Let M be a continuous module such that M (N) is a lifting module. Then M
is a direct sum of local modules and for any index set I, M (I) is lifting with
the exchange property (cf. [5, Proposition 4]).

Motivated by Er’s result mentioned above, we consider the following prob-
lem:

Problem 3. Let M be an extending module such that M (N) is a lifting
module. When does the lifting property on M (N) imply the same on M (I) for
arbitrary index set I? Moreover, does M have an indecomposable decomposi-
tion such that each indecomposable summand is local?

We show the following proposition.

Proposition 3.11. Let M be an extending module having the internal exchange
property such that M (N) is a lifting module. Then M is a direct sum of local
modules and for any index set I, M (I) is a lifting module with the exchange
property.
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Proof. By assumption and Theorem 3.3, there exists an indecomposable de-
composition M = ⊕IMi, where each Mi is uniform hollow. Since M has
the internal exchange property, each Mi has a local endomorphism ring by
Lemma 3.7. Furthermore, Mi is local by [2, Lemma 4]. Hence M is a direct
sum of local modules. By the proof of [5, Proposition 4], M (I) is a lifting
module with the exchange property. ¤
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