• Title/Summary/Keyword: local compression

Search Result 408, Processing Time 0.028 seconds

A Study on Crack Initiation of 2-Phase Composite with Through Notch (貫通노치를 가진 二相接合材의 龜裂發생에 대한 硏究)

  • ;;Shimada, Heihachi
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.636-642
    • /
    • 1989
  • In this paper, 3-dimensional fracture phenomena in the local area near the notch tip between the surface and the center of a composite bar which is consisted of two different materials were investigated by using embedded dyeing grids with the pitch of 50.8.mu. It was confirmed that the maximum strain near the notch tip occurred not at the notch front but at the curvature beginning point of the notch which is in the interior of z/W = 0.3 - 0.35 from the surface and a notch was initiated from that point. And that the strain near the notch front between the center and z/W = 0.65 - 0.7 toward the surface was in a state of compression.

A Study on Performance Assessment of Dry Floors Applied to Long-life Housing (장수명주택에 적용되는 건식바닥의 성능평가에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Soo-Am;Shin, Yun-Ho;Hwang, Eun-Kyoung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.133-143
    • /
    • 2019
  • Various problems regarding the wet floor method such as its complicated process and waste of thermal storage have been raised, but the usage of dry floor recommended for long-life housing has declined due to lack of confidence on the performance of dry floor. The purpose of this study is to secure the credibility of dry floor. Under this purpose, this study considered precedent studies and established directions to secure the performance of long-life housing infill, and thus, 9 performance items (Impact sound, Smoothness, thermal comfort, sensation hardness while walking, falling safety, impact resistance, local compression load, local strength and strain at heating) were drawn. In addition, the experiment was carried out for 5 performances except for legal performance, some dry floor performances and whole spatial performance. As a result, an appropriate result from all performances except was obtained. The performance of dry floor was verified for each item from these results and it is expected to use such results as basic data on dry floor in the future.

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

Development of a roller supported piston type loading platen reducing the frictional restraint along the interfaces between the specimen and platens under the biaxial loading condition (이축압축 조건에서 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발)

  • SaGong, Myung;Kim, Se-Chyul;Lee, J.S.;Park, Du-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.303-312
    • /
    • 2008
  • Multi-axial compression tests have been frequently adopted for the evaluation of material properties of rock cores and rock fracture model tests. Special care has to be applied on the boundary condition between the specimen and loading platen to draw the precise test results of the multi-axial compression tests. With the use of dry steel platen, the stress rotation will occur, due to the frictional restraint from the boundary between the specimen and loading platen. The restraint will deviate the expected test results under the conditions of the given external pressures. Various methods have been applied to reduce the side restraint along the specimen/loading platen interface. The steel brush type loading platen is one example of the attempts. In this paper, a new type of loading platen is introduced to overcome the limitation caused by the use of the brush type loading platen, which requires some internal space for the installation of the brushes. The new type of loading platen, roller supported steel piston type loading platen. is constituted of shot steel pistons which have sufficient stiffness to deliver the external pressure and the shaft type roller installed at the rear of the pistons. The pistons are designed to follow the local deformation of the specimens. In this paper, structural details of the loading platen are presented and frictional and biaxial compression tests results are shown to verify the required functions of the loading platen. Furthermore, calibration process is followed by a comparison between the test results and numerical analyses.

  • PDF

Are "Unstable" Burst Fractures Really Unstable?

  • Woo, Jun Hyuk;Lee, Hyun Woo;Choi, Hong June;Kwon, Young Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.944-949
    • /
    • 2021
  • Objective : The stability is an important factor to decide the treatment plan in thoracolumbar burst fracture patients. Patients with an unstable burst fracture generally need operative management. Decrease in vertebral body height, local kyphosis, involvement of posterior column, and/or canal compromise are considered important factors to determine the treatment plan. On the other hand, in thoracolumbar injury classification system (TLICS), surgery is recommended in patients with TLICS of more than 5 points. The purpose of this study was to apply the TLICS score in patients with thoracolumbar burst fractures and to distinguish the differences of treatment plan on burst fracture. Methods : All patients, diagnosed as a thoracolumbar burst fracture between January 2006 and February 2019 were included in this study. Unstable thoracolumbar burst fracture was defined as burst fracture with neurologic deficit, three-column injury, kyphosis over 30 degrees, decrease of anterior body height over 40 percent and canal comprise more than 50%. TLICS score was measured with morphology, neurological involvement and posterior ligamentous complex integrity. The existence of instability was compared with TLICS score. Results : Total 233 patients (131 men, 102 women) were included in this study. In Denis classification, 51 patients (21.9%) diagnosed as stable burst fracture while 182 patients (78.1%) had unstable burst fracture. According to TLICS, 72 patients (30.9%) scored less than 4, while 161 patients (69.1%) scored 4 or more. All the patients with stable burst fracture scored 2 in TLICS. Twenty-one patients (9.0) scored 2 in TLICS but diagnosed as unstable burst fracture. Thirteen patients had over 40% of vertebra body compression, four patients had more than 50% of canal compromise, three patients had both body compression over 40% and kyphosis over 30 degrees, one patients had both body compression and canal compromise. Fifteen patients presented kyphosis over 30 degrees, and three (20%) of them scored 2 in TLICS. Seventy-three patients presented vertebral body compression over 40% and 17 (23.3%) of them scored 2 in TLICS. Fifty-three patients presented spinal canal compromise more than 50%, and five (9.4%) of them scored 2 in TLICS. Conclusion : Although the instability of thoracolumbar burst fracture was regarded as a critical factor for operability, therapeutic strategies by TLICS do not exactly match with the concept of instability. According to the concept of TLICS, it should be reconsidered whether the unstable burst fracture truly unstable to do operation.

Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib (리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동)

  • Han, Sang Whan;Yeo, Seung Min;Kim, Wook Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.53-62
    • /
    • 2005
  • The purpose of this study is to improve the seismic behavior of the bracing members. Lee and Goel's (1987) concrete filling in the hollow structural section (HSS) reduced the severity of local buckling and increased the fracture life. However, concrete filling in the HSS did not prevent the occurrence of local buckling in the midsection of the bracing member, which resulted in continuous strength degradation. This study investigated the seismic behavior of the concrete-filled HSS bracing member, which is reinforced by ribs in the midsection of the bracing member. The main variable of the specimens is rib length. The test results showed that buckling mode, cyclic compression strength, and energy dissipation capacity of the bracing members were affected by rib length. Specimen reinforced with ribs with a length of 63% had better structural performance.

Experimental and numerical studies on the behaviour of corroded cold-formed steel columns

  • Nie, Biao;Xu, Shanhua;Zhang, Haijiang;Zhang, Zongxing
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.611-625
    • /
    • 2020
  • Experimental investigation and finite element analysis of corroded cold-formed steel (CFS) columns are presented. 11 tensile coupon specimens and 6 stub columns of corroded CFS that had a channel section of C160x60x20 were subjected to monotonic tensile tests and axial compression tests, respectively. The degradation laws of the mechanical properties of the tensile coupon specimens and stub columns were analysed. An appropriate finite element model for the corroded CFS columns was proposed and the influence of local corrosion on the stability performance of the columns was studied by finite element analysis. Finally, the axial capacity of the experimental results was compared with the predictions obtained from the existing design specifications. The results indicated that with an increasing average thickness loss ratio, the ultimate strength, elastic modulus and yield strength decreased for the tensile coupon specimens. Local buckling deformation was not noticeable until the load reached about 90% of the ultimate load for the non-corroded columns, while local buckling deformation was observed when the load was only 40% of the ultimate load for the corroded columns. The maximum reduction of the ultimate load and critical buckling load was 57% and 81.7%, respectively, compared to those values for the non-corroded columns. The ultimate load of the columns with web thickness reduced by 2 mm was 53% lower than that of the non-corroded columns, which indicates that web corrosion most significantly affects the bearing capacity of the columns with localized corrosion. The results predicted using the design specifications of MOHURD were more accurate than those predicted using the design specifications of AISI.

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

A Mesh Segmentation Reflecting Global and Local Geometric Characteristics (전역 및 국부 기하 특성을 반영한 메쉬 분할)

  • Im, Jeong-Hun;Park, Young-Jin;Seong, Dong-Ook;Ha, Jong-Sung;Yoo, Kwan-Hee
    • The KIPS Transactions:PartA
    • /
    • v.14A no.7
    • /
    • pp.435-442
    • /
    • 2007
  • This paper is concerned with the mesh segmentation problem that can be applied to diverse applications such as texture mapping, simplification, morphing, compression, and shape matching for 3D mesh models. The mesh segmentation is the process of dividing a given mesh into the disjoint set of sub-meshes. We propose a method for segmenting meshes by simultaneously reflecting global and local geometric characteristics of the meshes. First, we extract sharp vertices over mesh vertices by interpreting the curvatures and convexity of a given mesh, which are respectively contained in the local and global geometric characteristics of the mesh. Next, we partition the sharp vertices into the $\kappa$ number of clusters by adopting the $\kappa$-means clustering method [29] based on the Euclidean distances between all pairs of the sharp vertices. Other vertices excluding the sharp vertices are merged into the nearest clusters by Euclidean distances. Also we implement the proposed method and visualize its experimental results on several 3D mesh models.