• Title/Summary/Keyword: local body heating

Search Result 15, Processing Time 0.054 seconds

Effects of Local Heating on Whole Body Skin Temperature - Centered on the Comparison of Old Women & Female Collegians -

  • Shim, Boo-Ja
    • Journal of Fashion Business
    • /
    • v.6 no.3
    • /
    • pp.84-93
    • /
    • 2002
  • The purpose of this study was to design functional clothing based on the physical characteristics of old women. The subjects of this experiment were 5 healthy old women and 5 college women. While the subjects were exposed to the circumstances of $28{\pm}0.5^{\circ}C$ and local heating at 7 areas (chest, abdomen, back, loin, hand, thigh and instep), their skin temperature, physiological reaction and psychological reaction were determined. The conclusions about the effects of local heating are as follows : 1. Skin temperature before heating was in the order of head-neck> trunk> upper limbs> lower limbs (Group A: old subjects) and head-neck> trunk> lower limbs> upper limbs (Group B: young subjects). 2. The heating pad was attached and detached for 30 minutes each. The sharpest rise and fall were recorded at 5 minutes with the pad on and off. Both groups had great changes in the body parts near trunk. 3. With the pad on and off, both groups showed no change in body temperature, blood pressure, and pulse rate. 4. Concerning the pervasive effects of local heating on whole body skin temperature, loin heating greatly increased other body parts in Group A. In Group B, the effects were large in heating chest, abdomen, back, loin, and thigh. 5. The loin part of old women has the greatest pervasive effect of local body heating.

Effects of local body heating and cooling on thermogram analysis of the extremity with hot pack (핫팩을 이용한 인체의 부위별 가온과 제거가 사지부 피부 열화상도에 미치는 영향)

  • Kim, Soyoung;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.23 no.6
    • /
    • pp.1205-1215
    • /
    • 2014
  • The purpose of this study was to investigate the effect of local heating and cooling of various body parts on the skin temperature of the exposed extremities including neck. Hot pack was used to warm up the body of seven participants for 15 minutes and it was removed as the temperature of the hot pack decreased after 15minutes of warming. Thermograms of body surface with and without hot pack were analyzed intensively to observe the efficiency of the local heating of shoulder, abdomen, back waist, and foot on the skin temperature of ten area of the subjects' body. The results indicated that the absolute skin temperature of front upper arm and thigh was significantly higher depending on the area of heating, especially, in case of abdomen and foot heating, which was not observed at the back of the body. The rate of skin temperature of extremities such as finger, palm and foot was significantly different depending on the body area of local heating. Generally, it was found that back waist heating was not efficient to warm up and maintain the skin temperature of the body after removing the hot pack.

The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort Sensation for Vertical Temperature Differences - (대류 난방시 실내열환경에 관한 연구 -상하온도차에 대한 온열쾌적감-)

  • Kim Dong-Gyu;Kum Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.215-220
    • /
    • 2005
  • Thermal neutrality is not enough to achieve thermal comfort. The temperature level can be the optimal, and still people may complain. This situation is often explained by the problem of local discomfort. Local discomfort can be caused by radiant asymmetry, local air velocities, too warm and too cold floor temperature and vertical temperature difference. This temperature difference may generate thermal discomfort due to different thermal sensation in different body parts. Therefore, thermal comfort can not be correctly evaluated without considering these differences. This study investigates thermal discomfort sensations of different body parts and its effect on overall thermal sensation and comfort in air-heating room. Experimental results of evaluating thermal discomfort at different body parts in an air-heating room showed that thermal sensation on the shoulder was significantly related to the overall thermal sensation and discomfort. Although it is known that cool-head, warm-foot condition is good for comfort living, cool temperature around the head generated discomfort.

Seasonal Acclimatization in Summer versus Winter to Changes in the Sweating Response during Passive Heating in Korean Young Adult Men

  • Lee, Jeong-Beom;Kim, Tae-Wook;Min, Young-Ki;Yang, Hun-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2015
  • We investigated the sweating response during passive heating (partial submersion up to the umbilical line in $42{\pm}0.5^{\circ}C$ water, 30 min) after summer and winter seasonal acclimatization (SA). Testing was performed in July during the summer, 2011 [summer-SA; temp, $25.6{\pm}1.8^{\circ}C;$ relative humidity (RH), $82.1{\pm}8.2%$] and in January during the winter, 2012 (winter-SA; temp, $-2.7{\pm}2.9^{\circ};$ RH, $65.0{\pm}13.1%$) in Cheonan ($126^{\circ}52^{\prime}N$, 33.38'E), Republic of Korea. All experiments were carried out in an automated climatic chamber (temp, $25.0{\pm}0.5^{\circ}C$: RH, $60.0{\pm}3.0%$). Fifteen healthy men (age, $23.4{\pm}2.5$ years; height, $175.0{\pm}5.9cm;$ weight, $65.3{\pm}6.1kg$) participated in the study. Local sweat onset time was delayed during winter-SA compared to that after summer-SA (p<0.001). Local sweat volume, whole body sweat volume, and evaporative loss volume decreased significantly after winter-SA compared to those after summer-SA (p<0.001). Changes in basal metabolic rate increased significantly after winter-SA (p<0.001), and tympanic temperature and mean body temperature were significantly lower after summer-SA (p<0.05). In conclusion, central sudomotor acitivity becomes sensitive to summer-SA and blunt to winter-SA in Rebubic of Korea. These results suggest that the body adjusts its temperature by economically controlling the sweating rate but does not lower the thermal dissipation rate through a more effective evaporation scheme after summer-SA than that after winter-SA.

Sportswear Physiological Optimization: Effects of Clothing ease, local heating and materiales (운동복의 기능성과 쾌적성에 관한 연구)

  • Lee Young Suk;An Tae Whan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.2 s.38
    • /
    • pp.127-138
    • /
    • 1991
  • The aim of the present stud)r has been to obtain new and additional data allolwing a better design of sports garments as well as a better choice among some materiales, through measure-ment of body surface changes in the upper trunk in movement, measurement on the effects of local heating on other parts of the body and measurement of the thermal resistance of 6 types of materials applied on a manikin. In the first experiment, the upper trunk was divided in 32 Parts, the surface of which was measured by the tape method for two upper limb positions: extension at $90^{\circ}$ and $180^{\circ}$. In the second experiment, skin temperature, local thermal sensations and whole body thermal sensation were measured every 5 minutes during 40 minutes. The four areas of the shoulder, abdomen, hande and feet were heated with the hot pack at $50^{\circ}C$. In the third experiment, the regional thermal resistance of the various materials selected, in two different cases of clothing ease, have been measured by using a thermal manikin. Resultes of experiments were: 1. Extensions cause the upper front part of the trunk surface to lengthen vertically while the back tends to stretch in width. 2. Skin temperatures of the upper limbs are influenced by the abdomen and shoulder boatings. The correlation between the whole body thermal sensation and the upper trunk thermal sensation is significantly asserted. 3. Ceramic and aluminium coated materiales offer the most effective thermal resistance; ease in clothing increases the thermal resistance at the breast and the abdomen as well as the clo value of the materials.

  • PDF

A study on the comfort thermal environment by the Draft in floor panel heating system (바닥면복사난방에서 Draft에 의한 쾌적열환경에 관한 연구)

  • KyungHeeLee
    • Journal of the Korean housing association
    • /
    • v.7 no.2
    • /
    • pp.121-129
    • /
    • 1996
  • This study was to estimate how about various effects on the body thermal sensation as air velocity. clo. mean radiant temperature and resultant temperature are varied. The indoor thermal environment elements are measured under the five different of air velocity. Using the above considerations. the following results are obtained. ▶ The states, the air velocity under 0.5 m/s and 0.63 to 0.9 clo. were shown that the comfort zone of mean radiant temperature by 21.2~24.7C, the neutral point by 22.8C, the resultant temperature by 20.7-24.4C and the neutral point by 22.6C. ▶ On equal condition, the draft was occurred at a given air-velocity under 0.5m.s. It was also appeared the floor panel heating system affecting the body thermal sensation by the subject’s below-chest parts and the local discomfort by sensations on the feet and the knees.

  • PDF

Human Responses to Pattern Ease of Base Layer with Abdominal Heating Pads (복부 가열 패드를 부착한 상의 베이스 레이어의 여유량에 따른 인체 반응)

  • Lee, Gyeongmi;Hong, Kyunghi;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.4
    • /
    • pp.687-697
    • /
    • 2017
  • To figure out an appropriate pressure level for a body warming base layer, human responses were observed when the pattern reduction of base layers varied. Under the condition of $2^{\circ}C$, 60% RH, 0.1m/s, ten male subjects participated in the experiment with four sizes of experimental vests where heating pads were attached. The subjective evaluations of the heating vests with different sizes were reported using 7 or 9 point scales. We simultaneously observed chest, abdomen and scapula skin temperatures and microclimate humidity. It was found that the tight pattern as in the case of A or B provided a warmer subjective sensation and skin temperature than C or D; however, there were no differences in skin temperature at the chest. Eventually, the chest temperature decreased after about 30 mins of heating; however, temperature of abdomen increased and indicated that heating with two commercial pads used was inadequate for whole body warming. The pressure sensation of 'tight' was improved after warming the abdomen in a cold environment. Overall, the gaps beyond the original circumference of the abdomen, as in C or D, were not desirable for the local heating of abdomen under the conditions of this experiment where walking was included in the protocol. The experiment garment B with nude waist circumference was the best, and D with the largest ease, was the worst for a comfortable warming vest.

ANALYSIS OF WAVE VELOCITY FOR TEMPERATURE PROPERGATION IN A MECHANICAL FACE SEAL (기계평면시일에서 온도전파를 위한 파속도의 이론적해석)

  • 김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.06a
    • /
    • pp.50-56
    • /
    • 1987
  • A mechanical face seal is most commonly used to seal liquids and gases at various speeds, pressures and temperatures. The primary seal ring is in sliding contact with the seal seat and as a result heat in the vicinity of the interface is generated. Local temperatures at points along the circumferential direction will fluctuate as asperities on the surfaces pass. This kind of fluctuation of temperature has been investigated to take place. This may lead to the hot spots phenomenon between the contacting asperities. Sibley and Allen showed photographic evidence of systemically moving hot spots in the contact zone. The appearance of such a temperature disturbance has been attributed to a kind of thermoelastic instabilities between two surfaces: This involves a feedback loop which comprises localized elevation of frictional heating, resultant localized thermal bulding, localized pressure increase as the result of the bulging and futher elevation of frictional heating as the result of the pressure increase. The heating of hot spots will be continued until the expanded material due to the frictional heating is worn off. Therefore to predict the speed of temperature propagation into the body is essential to the analysis of heat transfer on the edge of the seal.

  • PDF

A Study on Mechanical Properties and Microstructure of Local-Hardening Heat-Treated Automotive Panel (국부 경화 열처리된 차체 부품의 기계적 성질과 미세조직에 관한 연구)

  • Lee, Jae Ho;Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.301-308
    • /
    • 2010
  • A steel with chemical composition, 0.22% C, 0.25% Si, 1.26% Mn, 0.22% Cr, 0.04% Ti, 0.0042% B, and a microstructure of ferrite and spheroidized cementite has been press-formed to automotive center pillar followed by local-hardening heat-treatment. Hardness, tensile properties, fractography, microstructure and surface roughness of local-hardening heat-treated automotive center pillar have been examined. The directly heated and quenched area had fully martensitic structure with Vickers hardenss in the range of 500 to 510. The heat affected area close to the directly heated area showed dual-phase structure of ferrite and martensite. The width of the heat-treated and heat-affected areas after the local-hardening heat treatment was ranging from 32 mm to 50 mm. The surface of the local-hardening heat-treated center pillar revealed some temper color as a consequence of the oxidation during the heat treatment, but the surface roughness was not affected by the local-hardening heat treatment.

Physiological and Psychological Thermal Responses to Local Heating of the Human Body in a Cold Environment (한랭환경하에서 인체의 국소가온 자극이 온열생리.감각반응에 미치는 영향)

  • Shin, Jounghwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.10
    • /
    • pp.1745-1753
    • /
    • 2001
  • 본 연구는 한랭 환경 하에서의 인체의 국소 가온 자극이 생리, 감각반응에 끼치는 영향을 검토했다. 건강한 성인여자 7명을 대상으로, 기온 $25^{\circ}C$, 습도50%의 환경 하에서 균일한 국소 가온을 부하 했을 때 피부온, 고막온, 손가락, 발가락 혈류량, 온냉감, 쾌적감의 반응에 미치는 영향을 검토한 결과는 다음과 같다. 1) 국소가온에 의해 가온 부위 피부온은 유의하게 상승하고 가온 부위에 따라 상승도에는 유의한 차가 보였다. 2) 국소가온에 의해 고막온은 머리의 가온 시에 높은 상승, 전완의 가온 시에 상승하고, 다른 가온 부위에서는 하강의 경향이 보였다. 3) 국소가온에 의해 혈류량의 변화는 3개의 군으로 분류된다. 가온과 함께 손가락 혈류량이 증가하는 군, 발가락 혈류량이 변화하는 군, 양쪽의 혈류량이 적게 변화하는 군으로 나누어진다. 이것을 각 피험자의 평균 피부온 수준 즉 체온조절 수준과 관계 있는 것으로 논할 수 있다 4)국소 가온에 의해 각 부 위 피부온으로의 파급효과는 머리, 상완의 가온 시에 크지만 대퇴, 하퇴 다리의 가온 시에는 대부분의 부위에서 영향이 보이지는 않았다. 5) 이와 같이 국소 가온에 의 한 생리, 감각반응은 가온 부위에 따라 다르고 머리, 상완의 가온 시에는 생리반응이 크고 하퇴, 다리의 가온시에는 국소의 감각변화가 컸다.

  • PDF