• Title/Summary/Keyword: local bending

Search Result 315, Processing Time 0.023 seconds

A study on the nonlinear analysis of spatial frame structures with nonlinear rotational spring elements (비선형 회전 스프링 요소를 갖는 공간 프레임의 구조의 비선형 해석에 관한 연구)

  • 이병채;박문식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.29-42
    • /
    • 1990
  • Three dimensional frame structures with such nonlinearities as large displacements, medium rotations, plastic hinges and local defects are efficiently analyzed by introducing the nonlinear rotational spring. Formulations are based on the incremental updated Lagrangian descriptions and the virtual work principle, Axial displacement and twisted angle in beam elements are interpolated linearly, while bending displacements are approximated by the Hermite polynomials. The modified are length method is used as a solution method. The moment-angle of rotation relationship obtained analytically or experimentally can be easily incorporated into the solution procedure. Several examples tested show that the present method can be used efficiently in analyzing nonlinear frame structures with plastic hinges or local defect.

  • PDF

Experimental Study of Buckling Behavior of Composite Laminates with an Embedded Delamination (내재된 층간분리가 존재한 복합재 적층판의 좌굴거동에 대한 실혐 연구)

  • Kim, Hyo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2491-2500
    • /
    • 1996
  • An experimental and analytical investigation is performed to study the buckling behavior of composite laminates with an embedded delamination. It is of particular interest to veryfy whether delamination growth cddurs with continuming deformation after buckling of composite laminates with an embedded delamination. Experiments are conducted for [0/sub 4///90/sub 8//0/sub 4/]/sub r/ laminates with delamination size in which local buckling mode governs buckling. Results show that delamination growth occurs in hgigher load after buckling and is accompanid by other damage mechanisms such as splitting. Also, it is found that transverse deformation before difurcation buckling is due to initial imperfection and structure such as plate with small bending stiffness is sensitive to that.

Effect of Local Wall Thinning Defect on the Collapse Moment of Elbow (엘보우의 붕괴모멘트에 미치는 국부 감육결함의 영향)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.402-409
    • /
    • 2004
  • The purpose of this study is to investigate the effect of local wall thinning on the collapse of elbow subjected to internal pressure and bending moment. Thus, the nonlinear three-dimensional finite element analyses were performed to obtain the collapse moment of elbow containing various wall thinning defects located at intrados and extrados under two loading modes (closing and opening modes) with internal pressure. From the results of analysis, the effect of wall thinning defect on the global moment-rotation behavior of elbow was discussed, and the dependence of collapse moment of elbow on wall thinning depth, length, and circumferential angle was investigated under different loading mode and defect location.

Buckling analysis of elastically-restrained steel plates under eccentric compression

  • Qin, Ying;Shu, Gan-Ping;Du, Er-Feng;Lu, Rui-Hua
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.379-389
    • /
    • 2018
  • In this research, the explicit closed-form local buckling solution of steel plates in contact with concrete, with both loaded and unloaded edges elastically restrained against rotation and subjected to eccentric compression is presented. The Rayleigh-Rize approach is applied to establish the eigenvalue problem for the local buckling performance. Buckling shape which combines trigonometric and biquadratic functions is introduced according to that used by Qin et al. (2017) on steel plate buckling under uniform compression. Explicit solutions for predicting the local buckling stress of steel plate are obtained in terms of the rotational stiffness. Based on different boundary conditions, simply yet explicit local buckling solutions are discussed in details. The proposed formulas are validated against previous research and finite element results. The influences of the loading stress gradient parameter, the aspect ratio, and the rotational stiffness on the local buckling stress resultants of steel plates with different boundary conditions were evaluated. This work can be considered as an alternative to apply a different buckling shape function to study the buckling problem of steel plate under eccentric compression comparing to the work by Qin et al. (2018), and the results are found to be in consistent with those in Qin et al. (2018).

A Study on Characteristic of High Frequency Induction Heating for Local Heating (국부가열용 고주파 유도가열 특성에 관한 연구)

  • Jin, Hyung-Kook;Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.60-60
    • /
    • 2010
  • Since the curved hull plate was made by a series of manufacturing process including cold bending, manual local heating and correction work, the accuracy of curved plate strongly depends on the proficiency of worker. So the demands on the automatic local heating system for curved hull plate have continuously increased and the various researches relevant to it have been performed. Generally, the heat sources used for local heating were flame and induction heat. In terms of initial cost, flame heating is in a better favorable position than induction heating. However, from the viewpoint of the control of heat, induction heating has more advantage. So the various researches related to apply the induction heating to the automatic forming system has been performed. The purpose of this study is to establish the proper capacity of high frequency induction heating system for forming the curved hull plate. In order to do it, the proper coil shape for local heating was designed and the efficiency of induction heating system was determined by comparing of temperature results obtained by FEA and experiment. With the results, the extensive FEA was performed to identify the effect of heated plate dimension, cooling method and the capacity of induction heating system on the amount of heat loss introduced by induction heating. Based on the results, the proper capacity of high frequency induction heating system was proposed.

  • PDF

Redistributions of Welding Residual Stress for CTOD Specimen by Local Compression (Local compression에 의한 CTOD 시편내의 용접잔류응력 재분포)

  • Joo, Sung-Min;Yoon, Byung-Hyun;Chang, Woong-Seong;Bang, Han-Sur;Bang, Hee-Seon;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.31-35
    • /
    • 2009
  • When conducting CTOD test, especially in thick welded steel plate, fatigue pre-cracking occasionally failed to satisfy the requirements of standards thus making the test result invalid. Internally accumulated residual stress of test piece has been thought as one of the main reasons. The propagation of fatigue crack, started from the tip of machined notch, which might have propagated irregularly due to residual stress field. To overcome this kind of difficulty three methods to modify the residual stress are suggested in standard i.e. local compression, reverse bending and stepwise high-R ratio method. In this paper not only multi pass welding but also local pre-compressing process of thick steel plate has been simulated using finite element method for clarifying variation of internal welding residual stress. The simulated results show that welding residual stress is compressive in the middle section of the model and it is predominantly increased after machining the specimen. Comparing as-welded state all component of the welding residual stress changing to compressive in the tip of machine notch whereas residual stress of the outer area remain as tensile condition relatively. Analysis results also show that this irregular residual stress distribution is improved to be more uniformly by applying local compression.

Case Study of Environmental Segmental Retaining Wall(SRW) Using Greenstone Block (환경친화적 블록식 보강토옹벽의 설계 및 시공사례연구)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.19-28
    • /
    • 2004
  • Segmental Retaining Wall(SRW) has been variously applying in Civil and Architecture construction. Recently, the application of environmental element in all type's structures came to essential requirement, and the construction cases of retaining wall using reinforced soil and block are more increased than the past. But, this trend more widely was spread environmental element as landscape work for the backside of reinforced retaining wall as well as block itself. New environmental block, Greenstone Block, developed to apply of this tendency. The retaining wall system using Greenstone can be environmental constructing at both block itself and backside of retaining wall. The material tests, the axial compressive strength test of block and bending test of fiber-pipe, exercised to design and construction of vertical SRW, which were satisfied NCMA standard. Through this procedure, Rewall (ver 1.0) was developed, which can be automation design of SRW including internal stability, external stability and local stability. And these can be considered setback of retaining wall, as well the examples of vertical retaining wall using block presented to satisfying the follows; strength of reinforced geotextile, height of retaining wall, surcharge, types of backfill and groundwater level etc. Many problems investigated on after or before of construction were due to local failure, insufficiency of bearing capacity and groundwater level. Especially, the local failure was many occurred to during compaction or after construction, and the cases of SRW construction is similar to the results of model test on vertical SRW.

Investigation of flexural behavior of a prestressed girder for bridges using nonproprietary UHPC

  • Pham, Hoa D.;Khuc, Tung;Nguyen, Tuan V.;Cu, Hung V.;Le, Danh B.;Trinh, Thanh P.
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • Ultra-high-performance concrete (UHPC) is recognized as a promising material in future civil engineering projects due to its outstanding mechanical and durability properties. However, the lack of local UHPC materials and official standards, especially for prestressed UHPC structures, has limited the application of UHPC. In this research, a large-scale prestressed bridge girder composed of nonproprietary UHPC is produced and investigated. This work has two objectives to develop the mixing procedure required to create UHPC in large batches and to study the flexural behavior of the prestressed girder. The results demonstrate that a sizeable batch of UHPC can be produced by using a conventional concrete mixing system at any precast factory. In addition, incorporating local aggregates and using conventional mixing systems enables regional widespread use. The flexural behavior of a girder made by this UHPC is investigated including flexural strength, cracking pattern and development, load-deflection curve, and strain and neutral axis behaviors through a comprehensive bending test. The experimental data is similar to the theoretical results from analytical methods based on several standards and recommendations of UHPC design.

Half-Scaled Substructure Test of a Transmission Tower Using Actuators (엑츄에이터를 이용한 송전철탑의 1/2 축소부분실험)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.178-188
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, it was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

  • PDF

Flexural behaviour of steel plate-masonry composite beams

  • Jing, Deng-Hu;Cao, Shuang-Yin;Shi, Lei
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.123-137
    • /
    • 2012
  • Steel plate-masonry composite structure is a newly-developed type of structural technique applicable to existing masonry buildings by which the load-bearing walls can be removed for large spaces. This kind of structure has been used in practice for its several advantages, but experimental investigation on its elements is nearly unavailable in existing literature. This paper presents an experimental study on the flexural behaviour of four steel plate-masonry composite beams loaded by four-point bending. Test results indicate that failure of the tested beams always starts from the local buckling of steel plate, and that the tested beams can satisfy the requirement of service limit state. In addition, the assumption of plane section is still remained for steel plate prior to local buckling or steel yielding. By comparative analyses, it was also verified that the working performance of the beam is influenced by the cross-section of steel plate, which can be efficiently enhanced by epoxy adhesive rather than cement mortar or nothing at all. Besides, it was also found that the contribution of the encased masonry to the flexural capacity of the composite beam cannot be ignored when the beam is injected with epoxy adhesive.