• Title/Summary/Keyword: loading scheduling

Search Result 60, Processing Time 0.022 seconds

Searching for an Intra-block Remarshalling Plan for Multiple Transfer Cranes (복수 트랜스퍼 크레인을 활용하는 블록 내 재정돈 계획 탐색)

  • Oh Myung-Seob;Kang Jae-Ho;Ryu Kwang-Ryel;Kim Kap-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.7
    • /
    • pp.624-635
    • /
    • 2006
  • This paper applies simulated annealing algorithm to the problem of generating a plan for intra-block remarshalling with multiple transfer cranes. Intra-block remarshalling refers to the task of rearranging containers scattered around within a block into certain designated target areas of the block so that they can be efficiently loaded onto a ship. In generating a remarshalling plan, the predetermined container loading sequence should be considered carefully to avoid re-handlings that may delay the loading operations. In addition, the required time for the remarshalling operation itself should be minimized. A candidate solution in our search space specifies target locations of the containers to be rearranged. A candidate solution is evaluated by deriving a container moving plan and estimating the time needed to execute the plan using two cranes with minimum interference. Simulation experiments have shown that our method can generate efficient remarshalling plans in various situations.

Conatiner Terminal Operation Method for the Efficient Dual Cycle Operation (효율적인 듀얼 사이클을 위한 터미널 운영방법)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.110-111
    • /
    • 2010
  • Recently, container terminal managers make an experiment on the double cycle and dual cycle operation, which ship loading and unloading were carried out simultaneously, for increasing the productivity of quay side. However, if we make an experiment on dual cycle operation in a real job site, the efficiency is poor up to terminal operation method as YTs(Yard Tractors)' allocation method, QCs(Quay Cranes)' working speed, and position of export containers. So, this paper examine more efficient terminal operation method, when terminal uses dual cycle operation.

  • PDF

Initial Ship Allocation for the Fleet Systematization (선단구성을 위한 초기배선)

  • 이철영;최종화
    • Journal of the Korean Institute of Navigation
    • /
    • v.8 no.1
    • /
    • pp.1-16
    • /
    • 1984
  • The economical property of a shipping enterprise, as well as other transportation industries, is determined by the difference between the freight earned and expense paid. This study can be regarded as a division of optimizing ship allocation to routes under the integrated port transport system. Fleet planning and scheduling require complicated allocations of cargoes to ships and ships to routes in order to optimize the given criterion function for a given forecast period. This paper deals with the optimum ship allocation problem minimizing the operating cost of ships in a shipping company. Optimum fleet operating for a shipping enterprise is very important, since the marine transportation is a form of large quantity transport requiring long-term period, and there is a strong possibility to bring about large amount of loss in operation resulting from a faulty ship allocation. Where there are more than one loading and discharging ports, and a variety of ship's ability in speed, capacity, operating cost etc., and when the amount of commodities to be transported between the ports has been determined, then the ship's schedule minimizing the operating cost while satisfying the transport demand within the predetermined period will be made up. First of all a formula of ship allocation problems will be established and then will be constructed to solve an example by the Integer Programming application after consideration of the ship's ability, supply and demand of commodity, amount of commodity to be transported, operating costs of each ship etc. This study will give good information on deciding intention for a ship oprator or owner to meet the computerization current with shiping management.

  • PDF

Designing of a Global Logistics System for the ICGCPS under Considering Overseas Markets

  • Hiraki, Shusaku;Ichimura, Takaya;Ishii, Kazuyoshi
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • This paper proposes a way of designing of a global logistics system for "the international cooperative global complementary production system" (ICGCPS) constructed in ASEAN region. ICGCPS is a global production system with several production bases located in a number of countries. In order to assemble the final products and sell them in the domestic market, each production base produces only special kinds of components and parts with the total demand required all the participating countries, and supplies them to the other production bases each other. In the ICGCPS, there are a number of important decision-making problems such as identifying which countries are suitable to produce specified components and parts, and deciding how to transport components and parts between the production bases. In the initial period of this system, each production base focused on its domestic market so that the final products it produced were sold only in the country where the base was located. Recently, some production bases have expanded sales to overseas markets. Taking this fact into account, we propose a production and transportation planning model in this paper that takes into account the export quantity of the final products, formulating it into a mathematical programming problem. Using this, we propose a way for managing the supply chain processes of the ICGCPS in order to improve performance measurements such as the total lead-time, the inventory quantity at the depot and the average rate of loading. A numerical example is presented to clarify the procedure proposed in this paper.

Optimal Headways of Urban Bus Services, Reflecting Actual Cycle Time and Demand (운행시간 및 수요 기반 버스 최적배차간격 산정에 관한 연구)

  • Kim, Sujeong;Shin, Yong Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.167-174
    • /
    • 2018
  • This study attempts to construct a model of optimal headway, focusing on a practical applicability to bus transit operation. Examining the existing bus operation and scheduling plans imposed by Busan City, we found that the plans failed to reasonably take into account such realities as varying traffic and operational conditions. The model is thus developed to derive the hourly optimal headway by routes satisfying the real-world conditions: varying hourly demand and cycle time, applying the model to routes 10 and 27 as examples. To do so, we collect big-dataset generated by smart card system and BIMS (Bus Inforamtion Management System). It is expected that the results of this study wil be a basis for further refined research in this field as well as for preparing practical timetables for bus operation.

An Activity-Based Analysis of Heavy-Vehicle Trip Chains (우리나라 대형 화물차의 통행사슬 분석:활동기반모형 적용)

  • Joh, Chang-Hyeon;Kim, Chan-Sung;Seong, Hong-Mo
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.192-202
    • /
    • 2008
  • Typical activity-based travel analysis has been focused on passenger travel using household survey data. The current research focuses on freight transport using one-day travel survey data. Passenger travel can be seen as the outcome of traveller's subjective decision-making, whereas freight transport is the outcome of shipper or transport company's optimized scheduling. The research conducts an activity-based analysis of freight-vehicle trip chains. In particular, the research focuses on the difference in travel pattern between shipper-oriented private vehicle and transport company-oriented business vehicle. The research analyzed the travel diary of freight vehicles collected as part of the third national logistic survey in 2005. The diary is freight driver's one-day travel record including the information of loading capacity, item transported, destination, arrival time, etc. The analysis results show the difference between private and business vehicles in the travel pattern regarding the sequences of destination, destination type and item transported and the multi-dimensional information of the three sequences.

  • PDF

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.133-140
    • /
    • 2007
  • Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimizea ETA(estimated time of arrival) and fuel consumption that shipping company and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method. Finally, It is assistance measure for ship's optimum navigation route safety planning & assessment.

  • PDF

A Berth Allocation Problem to Maximize the Available Rate of Naval Vessels (함정 가동률 최대화를 위한 선석할당문제)

  • Won, Hyun-Sik;Ahn, Tae-Ho;Lee, Sang-Heon
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.19-27
    • /
    • 2009
  • This paper addresses the berth allocation problem in naval ports. Navy vessels need various services such as emergency repair, missile loading, oil supply and many others while commercial vessels only unload and load container at the port. Furthermore, naval vessels have to shift frequently due to a limited capacity of the port. The objective of this paper is to minimize the total number of nesting vessels at the naval port. In other word, the objective is to maximize the total number of naval battleships engaging in the sea. A mixed integer programming(MIP) model is developed and experiments are conducted with ILOG CPLEX 11.0. We compare the computational results of the MIP model to the current scheduling approach by the ROK Navy. The results showed that MIP model performed well by minimizing the number of nesting vessels. and avoiding unnecessary shifts.

Optimal Trajectory Finding and re-optimization of SBR for Nitrogen Removal (연속 회분식 반응기에서 최적 질소 제거를 위한 최적 궤적 찾기와 재최적화)

  • Kim, Young-Whang;Yoo, ChangKyoo;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This article aims to optimize the nitrogen removal of a sequencing batch reactor (SBR) through the use of the activated sludge model and iterative dynamic programming (IDP). Using a minimum batch time and a maximum nitrogen removal for minimum energy consumption, a performance index is developed on the basis of minimum area criteria for SBR optimization. Choosing area as the performance index makes the optimization problem simpler and a proper weighting in the performance index makes it possible to solve minimum time and energy problem of SBR simultaneously. The optimized results show that the optimal set-point of dissolved oxygen affects both the total batch time and total energy cost. For two different influent loadings, IDP-based SBR optimizations suggest each supervisory control of batch scheduling and set-point trajectory of dissolved oxygen (DO) concentration, and can save 20% of the total energy cost, while meeting the treatment requirements of COD and nitrogen. Moreover, it shows that the re-optimization of IDP within a batch can solve the modelling error problem due to the influent loading changes, or the process faults.

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.203-210
    • /
    • 2007
  • This paper treats optimal route safety assessment system at seaway based on weather forecasting data through INMARSAT. Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimized ETA(estimated time of arrival) and fuel consumption that shipping company. and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method Basically, the weather forecast is assumed to be prepared previously in order to operate this system.

  • PDF