• Title/Summary/Keyword: loading scheduling

Search Result 60, Processing Time 0.027 seconds

AUTOSAR : Deadline-Compliant Scheduling Method Applicable to Timing Protection Mechanisms (AUTOSAR:타이밍 보호 메커니즘 적용 가능한 마감시간 준수 스케줄링 방법)

  • Kim, Joo-Man;Kim, Seon-Jong;Kim, Byoung-Chul;Kwon, Hyeog-Soong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.103-109
    • /
    • 2019
  • The automotive electronic system should provide a method that can be safely performed by loading a number of application programs having time constraints in several electronic control devices. In this paper, we propose a timing protection mechanism for AUTOSAR, which is a real - time operating system specification for automotive field, in order to observe the deadline of each task when scheduling real - time tasks. We propose a dynamic non-preemption algorithm to guarantee a flexible deadline for fixed priority or dynamic priority tasks, and a location where execution time can be monitored for errors, and suggest ways to implement the AUTOSAR time protection mechanism.

Modeling and Scheduling of Cyclic Shops with Time Window Constraints

  • Seo, Jeong-Won;Lee, Tae-Eog
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.161-164
    • /
    • 2000
  • A cyclic shop is a production system that repeatedly produces identical sets of jobs, called minimal part sets, in the same loading and processing sequence. We consider a version of cyclic shop where the operations are processed and unloaded within time limits, so called a time window. We model the shop using an event graph model, a class of Petri nets. To represent the time window constraint, we introduce places with negative time delays. From the shop modeling graph, we develop a linear system model based on the max- plus algebra and characterize the conditions on the existence of a stable schedule.

  • PDF

On optimal cyclic scheduling for a flexible manufacturing cell

  • Kise, Hiroshi;Nakamura, Shinji;Karuno, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1250-1255
    • /
    • 1990
  • This paper discusses an optimal cyclic scheduling problem for a FMC (Flexible Manufacturing Cell) modeled by a two-machine flowshop with two machining centers with APC's (Automated Pallet Changers), an AGV (Automated Guided Vehicle) and loading and unloading stations. Cyclic production in which similar patterns of production is repeated can significantly reduce the production lead-time and WIP (Work-In-Process) in such flexible, automated system. Thus we want to find an optimal cyclic schedule that minimizes the cycle time in each cycle. However, the existence of APC's as buffer storage for WIP makes the problem intractable (i.e., NP-complete). We propose an practical approximation algorithm that minimizes, instead of each cycle time, its upper bound. Performances of this algorithm are validated by the way of computer simulations.

  • PDF

Model-based Estimation of Production Parameters of Electronics FAB Equipment (모델기반의 전자부품 FAB설비 생산기준정보 추정)

  • Kang, Dong-Hun;Kim, Min-Kyu;Choi, Byoung-Kyu;Park, Bum-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.166-173
    • /
    • 2007
  • In this paper, we propose a model-based approach to estimating production parameters of semiconductor FAB equipment. For FAB scheduling, for example, we need to know equipment's production parameters such as flow time, tact time, setup time, and down time. However, these data are not available, and they have to be estimated from material move data such as loading times and unloading times that are automatically collected in modern automated semiconductor FAB. The proposed estimation method may be regarded as a Bayes estimation method because we use additional information about the production parameters. Namely, it is assumed that the technical ranges of production parameters are known. The proposed estimation method has been applied to a LCD FAB, and found to be valid and useful.

A Simulation Study on a Workload-based Operation Planning Method in Container Terminals

  • Jeong, Yeon-Ho;Kim, Kap-Hwan;Woo, Youn-Ju;Seo, Bo-Hyeon
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.103-113
    • /
    • 2012
  • A yard in a container terminal is a temporary storage space before containers are loaded onto the target vessel or delivered to consignees. For improving the utilization of the space in the yard and the efficiency of loading and discharging operations, it is important that operation plans must be carefully constructed in advance. A heuristic method is suggested to solve operation space planning problems considering workloads on handling equipment as well as space availabilities. The operation plans in this paper includes quay crane (QC) schedules and space plans for multiple vessels considering the workload in the container yard of container terminals. This paper evaluates the effectiveness of a space planning method and the performance of a new QC scheduling method using a simulation model.

지능형 금형공장 개발

  • Choe, Byeong-Gyu;Go, Gi-Hun;Kim, Bo-Hyeon
    • CDE review
    • /
    • v.11 no.2
    • /
    • pp.15-22
    • /
    • 2005
  • Presented in the paper is an approach to developing an intelligent mold shop as a means to overcome the difficulties faced by mold-makers due to skill shortages and increased global competition. A machine shop where as much as of the human skills are replaced by a set of intelligent systems is called an intelligent machine shop, and an intelligent mold-making machine shop is called an intelligent mold shop(MS). By analyzing the contents of operator's skill. three intelligent S/W stations have been designed: Technical Data Processing(TDP) Station, Loading Schedule Station, and Real-time Monitoring Station. A detailed architecture of the TDP station is described, and measures of effectiveness of IMS are elaborated.

  • PDF

A Scenario based Framework for System Setup and Scheduling in Reconfigurable Manufacturing Systems (재구성형 유연가공라인을 위한 시나리오 기반 시스템 셋업 및 스케줄링 체계)

  • Lee, Dong-Ho;Kim, Ji-Su;Kim, Hyung-Won;Doh, Hyoung-Ho;Yu, Jae-Min;Nam, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.339-348
    • /
    • 2011
  • Reconfigurable manufacturing system (RMS), alternatively called changeable manufacturing, is a new manufacturing paradigm designed for rapid change in hardware and software components in order to quickly adjust production capacity and functionality in response to sudden changes in market or in regulatory requirements. Although there has been much progress in hardware components during the last decade, not much work has been done on operational issues of RMS. As one of starting studies on the operational issues, we suggest a framework for the system setup and scheduling problems to cope with the reconfigurability of RMS. System setup, which includes batching, part grouping, and loading, are concerned with the pre-arrangement of parts and tools before the system begins to process, and scheduling is the problem of allocating manufacturing resources over time to perform the operations specified by system setup. The framework consists of 8 scenarios classified by three major factors: order arrival process, part selection process, and tool magazine capacity. Each of the scenarios is explained with its subproblems and their interrelationships.

Enhanced Bit-Loading Techniques for Adaptive MIMO Bit-Interleaved Coded OFDM Systems (적응 다중 안테나 Bit-Interleaved Coded OFDM 시스템을 위한 향상된 Bit-Loading 기법)

  • Cho, Jung-Ho;Sung, Chang-Kyung;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.18-26
    • /
    • 2009
  • When channel state information (CSI) is available at the transmitter, the system throughput can be enhanced by adaptive transmissions and opportunistic multiuser scheduling. In this paper, we consider multiple-input multiple-output (MIMO) systems employing bit-interleaved coded orthogonal frequency division multiplexing (BIC-OFDM). We first propose a bit-loading algorithm based on the Levin-Campello algorithm for the BIC-OFDM. Then we will apply this algorithm to the MIMO system with a finite set of constellations, by reassigning residual power on each stream Simulation results show that proposed bit-loading scheme which takes the residual power into account improves the system performance especially at high signal-to-noise ratio (SNR) range.

MIMO Techniques for Green Radio Guaranteeing QoS

  • Nicolaou, Marios;Han, Congzheng;Beh, Kian Chung;Armour, Simon;Doufexi, Angela
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.130-139
    • /
    • 2010
  • Environmental issues and the need to reduce energy consumption for lowering operating costs have pushed power efficiency to become one of the major issues of current research in the field of wireless networks. This paper addresses a number of multiple input multiple output (MIMO) precoding and scheduling techniques across the PHY and MAC layers that can operate under a reduced link budget and collectively improve the transmit power efficiency of a base station, while maintaining the same levels of service. Different MIMO transmission and precoding schemes proposed for LTE, achieving varying degrees of multiuser diversity in both the time, frequency as well as the space domain, are examined. Several fairness-aware resource allocation algorithms are applied to the considered MIMO schemes and a detailed analysis of the tradeoffs between power efficiency and quality of service is presented. This paper explicitly examines the performance of a system serving real-time, VoIP traffic under different traffic loading conditions and transmit power levels. It is demonstrated that by use of efficient scheduling and resource allocation techniques significant savings in terms of consumed energy can be achieved, without compromising QoS.