• Title/Summary/Keyword: loading performance

Search Result 2,636, Processing Time 0.029 seconds

Statistical Energy Analysis of Low-Altitude Earth Observation Satellite (저궤도 지구관측 위성의 통계적 에너지 해석)

  • Woo, Sung-Hyun;Kim, Hong-Bae;Im, Jong-Min;Kim, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.197-202
    • /
    • 2006
  • The low-altitude earth observation satellite is generally equipped with high performance camera as a main payload which is vulnerable to vibration environment. During the launch process of a satellite, the combustion and jet noise of launch vehicle produce severe acoustic environment and the acoustic loads induced may damage the critical equipments of the satellite including the camera. Therefore to predict and simulate the effect of the acoustic environment which the satellite has to sustain at the lift-off event is very important process to support the load-resistive design and test-qualification of components. Statistical Energy Analysis(SEA) has been widely used to estimate the vibro-acoustic responses of the structures and gives statistical but reliable results in the higher frequency region with less modeling efforts and calculation time than the standard FEA. In this study, SEA technique has been applied to a 3-Dimensional model of a low-altitude earth observation satellite to predict the acceleration responses on the structural components induced by the high level acoustic field in the launch vehicle fairing. In addition, the expected response on each critical component panel was calculated by the classical method in consideration of the mass loading and imposed sound pressure level, and then compared with SEA results.

  • PDF

A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints (복합재료-금속 접착접합부의 피로손상의 실시간 평가기법)

  • Kwon, Oh-Yang;Kim, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.6
    • /
    • pp.439-447
    • /
    • 1999
  • One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction ($E/E_o$) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures.

  • PDF

Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model (HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석)

  • Kim, So Rae;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.

Characterization of V/TiO2 Catalysts for Selective Reduction (V/TiO2 촉매의 선택적 촉매 환원 반응특성 연구)

  • Lee, Sang-Jin;Hong, Sung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.512-518
    • /
    • 2008
  • The present work studied the selective catalytic reduction (SCR) of NO to $N_2$ by $NH_3$ over $V/TiO_2$ focusing on NOx control for the stationary sources. The SCR process depends mainly on the catalyst performance. The reaction characteristics of SCR with $V/TiO_2$ catalysts were closely examined at low and high temperature. In addition, adsorption and desorption characteristics of the reactants on the catalyst surface were investigated with ammonia. Seven different $TiO_2$ supports containing the same loading of vanadia were packed in a fixed bed reactor respectively. The interaction between $TiO_2$ and vanadia would form various non-stoichiometric vanadium oxides, and showed different reaction activities. There were optimum calcination temperatures for each samples, indicating different reactivity. It was finally found from the $NH_3-TPD$ test that the SCR activity was nothing to do with $NH_3$ adsorption amount.

Evaluation of Shear Behavior of Precast RC Beams According to Replacement Ratio of Ground Granulated Blast Furnace Slag (고로슬래그 미분말 치환율에 따른 프리캐스트 철근콘크리트 보의 전단거동 평가)

  • Jeong, Chan-Yu;Kim, Young-Seek;Lee, Jin-Seop;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • This study evaluates the shear performance of precast beams with ground granulated blast furnace slag. A total of four specimens according to replacement ratio of ground granulated blast furnace slag. The specimens under three loading points had a shear span-to-depth ratio of 2.5, and a rectangular section with a width of 200mm and a effect depth of 300 mm. In this study, existing equations were used for predicting the shear strength of the specimens. The shear strength by existing equations was compared with those of 89 reinforced concrete beams without shear reinforcement. It can be shown from experimental results that all specimens with ground granulated blast furnace slag showed a similar shear strength as compared with the specimen with portland cements alone.

Concrete Median Barrier Performance Improvement using Stiffness and Flexibility Reinforcement (강성 및 연성 보강을 통한 콘크리트 중앙분리대 성능 향상 분석)

  • Kim, Chan-Hee;Kim, Woo Seok;Lee, Ilkeun;Lee, Jaeha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2018
  • Recently, there was an collision accident of vehicle-concrete median barrier and unfortunately, passengers were killed by exceeded capacity of concrete median. Therefore, improving the capacity of concrete median barrier is need to reduce damage. Accordingly, in this study, appropriate collision model verified by using the FE analysis program LS-Dyna and recommend a concrete median barrier section. The improvement parameters such as wire mesh diameter, steel plate, rubber pad were selected for improved capacity of the median barrier. Finally, section of concrete median barrier improved wire mesh diameter decreased volume loss, section of concrete median barrier improved rubber pad accepted impact loading and increased elastic area.

A Study on FEM Analysis and its Endurance Evaluation of an Oil-Damper Rubber Bush for a Railway Vehicle (철도 차량용 오일댐퍼 고무부시의 유한요소해석 및 내구성 평가에 관한 연구)

  • Kim, Ho-Kyung;Park, Jin-Ho;Choi, Deok-Ho;Yang, Kyoung-Tak;Lee, Young-In
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.15-21
    • /
    • 2006
  • The railroad bogie's components experience repeated loading during service. Especially, oil damper bush has been fatigue fractured on the plane between rubber and steel stem during service, and which results in inferior of performance of the bogie. In this study, in order to offer a proper maintenance method of the bush, bubber bush used for the oil damper was fatigue tested and its damage fraction during service was estimated. Also, FEM analysis on the bush was conducted. When 1400, 1200, and 1000kgf of repeated loads were applied to the oil damper bush, final damage fraction exhibited 63.7%, 50% and 40%. From the results of FEM analysis, deformation energy density was found to be $0.5452kgf/mm^{2}$ at an applied load of 1400kgf and the location with maximum value coincided with the fractured location of the bush. Finally, it will be desirable to adopt the normalized damage fraction rather than absolute damage fraction in estimating remaining service lifetime of the bush.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

A Field Study on the Constructability and Performance Evaluation of Waveform Micropile (현장시험을 통한 파형 마이크로파일의 시공성 및 거동 평가)

  • Jang, Young-Eun;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.10
    • /
    • pp.67-79
    • /
    • 2016
  • Waveform micropile is an advanced construction method that combined the concept of conventional micropile with jet grouting method. This new form of micropile was developed to improve frictional resistance, which consequently leads to achieving higher bearing capacity and cost efficiency. Two field tests were conducted to examine the field applicability as well as to verify the effects of bearing capacity enhancement. In particular, waveform micropile construction using jet grouting method was performed to evaluate the viability of waveform micropile installation. After testing, the surrounding ground was excavated to check the accomplishment on the shape of waveform micropile. The result showed that waveform micropile can be installed by adjusting the grouting time and pressure. In the loading tests, waveform micropile's bearing capacity increased by 1.4 to 2.3 times depending on their shapes when compared with conventional micropile. Overall results clearly demonstrated that waveform micropile is an enhanced construction method that can improve bearing capacity.

Evaluation of Performance Simulation for Bridge Substructure Due to Types of Scour (지반세굴 유형에 따른 교량 하부구조의 해석적 거동 예측)

  • Jung, Wooyoung;Yune, Chanyoung;Lee, Ilhwa
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.5-11
    • /
    • 2013
  • The primary objective of this research is to evaluate the behavior of a bridge substructure subjected to scouring during flood. A finite element (FE) study was carried out on a substructure modeled using the standard section specified for highway bridges. The three-dimensional FE model consists of non-linear springs with tri-axial load capacities at the base in order to consider the loss of bearing capacity of the substructure by local scour phenomenon. Various time varying loading conditions and scouring patterns were considered in the analysis. The results indicate a change in the structural behavior of substructure depending on the eroded area and pattern. The outcome of this research will be useful to suggest basic design guidelines for ground sills of the bridge substructure.