• Title/Summary/Keyword: loading performance

Search Result 2,636, Processing Time 0.039 seconds

Evaluation on Fatigue Performance in Compression of Normaland Light-weight Concrete Mixtures with High Volume SCM (혼화재를 다량 치환한 경량 및 보통중량 콘크리트의 압축피로 특성 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.354-359
    • /
    • 2014
  • The objective of this study is to examine the fatigue behavior in compression of normal-weight and lightweight concrete mixtures with high volume supplementary cementitious material(SCM). The selected binder composition was 30% ordinary portland cement, 20% fly-ash, and 50% ground granulated blast-furnace slag. The targeted compressive strength of concrete was 40 MPa. For the cyclic loading, the constant maximum stress level varied to be 75%, 80%, and 90% of the static uniaxial compressive strength, whereas the constant minimum stress level was fixed at 10% of the static strength. The test results showed that fatigue life of high volume SCM lightweight concrete was lower than the companion normalweight concrete. The value of the fatigue strain at the maximum stress level intersected the descending branch of the monotonic stress-strain curve after approximately 90% of the fatigue life.

Application Evaluation of Asphalt mixtures using SDAR (Solvent DeAsphaltene Residue) (SDAR을 이용한 아스팔트 혼합물의 적용성 평가)

  • Yang, Sung Lin;Im, Jeong Hyuk;Hwang, Sung Do;Baek, Cheolmin
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.53-61
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the SDAR (solvent deasphaltene residue), which is obtained from the solvent deasphalting (SDA) process, as a pavement material. METHODS : The physical properties of the SDAR were evaluated based on its chemical composition, and asphalt mixtures with the SDAR were fabricated and used for the evaluation of mechanical properties. Firstly, the chemical composition of SARA (saturate, aromatic, resin and asphaltene) was analyzed using the TLC-FID (thin-layer chromatography-flame ionization detector). Moreover, the basic material properties of the asphalt binder with the SDAR were evaluated by the penetration test, softening point test, ductility test, and PG (performance grade) grade test. The rheological properties of the asphalt binder with the SDAR were evaluated by the dynamic shear modulus ($G^*$) obtained using the time-temperature superposition (TTS) principle. Secondly, the mechanical properties of the asphalt mixtures with the SDAR were evaluated. The compactibility was evaluated using the gyratory compacter. Moreover, the tensile strength ratio (TSR) was used for evaluating the moisture susceptibility of the asphalt mixtures (i.e., susceptibility to pothole damage). The dynamic modulus $E^*$, which is a fundamental property of the asphalt mixture, obtained at different temperatures and loading cycles, was used to evaluate the mechanical properties of the asphalt mixtures. RESULTS AND CONCLUSION : The SDAR shows stiffer and more brittle behavior than the conventional asphalt binder. As the application of the SDAR directly in the field may cause early failures, such as cracks on pavements, it should be applied with modifiers that can favorably modify the brittleness property of the SDAR. Therefore, if appropriate additives are applied on the SDAR, it can be used as a pavement material because of its low cost and strong resistance to rutting.

Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels

  • Brunesi, E.;Nascimbene, R.;Deyanova, M.;Pagani, C.;Zambelli, S.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.951-972
    • /
    • 2015
  • The focus of the present study is to investigate both local and global behaviour of a precast concrete sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. Based on these experimental and numerical data, the structural performance is then quantified under various loading conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service conditions.

Buckling analysis of elastically-restrained steel plates under eccentric compression

  • Qin, Ying;Shu, Gan-Ping;Du, Er-Feng;Lu, Rui-Hua
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.379-389
    • /
    • 2018
  • In this research, the explicit closed-form local buckling solution of steel plates in contact with concrete, with both loaded and unloaded edges elastically restrained against rotation and subjected to eccentric compression is presented. The Rayleigh-Rize approach is applied to establish the eigenvalue problem for the local buckling performance. Buckling shape which combines trigonometric and biquadratic functions is introduced according to that used by Qin et al. (2017) on steel plate buckling under uniform compression. Explicit solutions for predicting the local buckling stress of steel plate are obtained in terms of the rotational stiffness. Based on different boundary conditions, simply yet explicit local buckling solutions are discussed in details. The proposed formulas are validated against previous research and finite element results. The influences of the loading stress gradient parameter, the aspect ratio, and the rotational stiffness on the local buckling stress resultants of steel plates with different boundary conditions were evaluated. This work can be considered as an alternative to apply a different buckling shape function to study the buckling problem of steel plate under eccentric compression comparing to the work by Qin et al. (2018), and the results are found to be in consistent with those in Qin et al. (2018).

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge (직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성)

  • Ho, Thi Thanh Trang;Shin, Jichul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.54-62
    • /
    • 2016
  • Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

A radiographical study on the changes in height of grafting materials after sinus lift: a comparison between two types of xenogenic materials

  • Hieu, Pham-Duong;Chung, Jin-Hyung;Yim, Sung-Bin;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • Purpose: The performance of implant surgery in the posterior maxilla often poses a challenge due to insufficient available bone. Sinus floor elevation was developed to increase the needed vertical height to overcome this problem. However, grafting materials used for the sinus lift technique eventually show resorption. The present study radiographically compared and evaluated the changes in height of the grafting materials after carrying out maxillary sinus elevation with a window opening procedure. This study also evaluated the difference between two xenogenic bone materials when being used for the sinus lifting procedure. Methods: Twenty-one patients were recruited for this study and underwent a sinus lift procedure. All sites were treated with either bovine bone (Bio-$Oss^{(R)}$) with platelet-rich plasma (PRP) or bovine bone (OCS-$B^{(R)}$)/PRP. A total of 69 implants were placed equally 6-8 months after the sinus lift. All sites were clinically and radiographically evaluated right after the implant surgery, 7-12 months, 13-24 months, and 25-48 months after their prosthetic loading. Results: Changes of implant length/bone length with time showed a statistically significant decreasing tendency (P<0.05). There was no significant change in the Bio-$Oss^{(R)}$ group (P>0.05). In contrast, the OCS-$B^{(R)}$ group showed a significant decrease with time (P<0.05). However, no significant difference was observed between the two groups (P>0.05). Conclusions: The results showed that there was significant reduction in comparison with data right after placement, after 7 to 12 months, 13 to 24 months, and over 25 months; however, reduction rates between each period have shown to be without significance. No significant difference in height change was observed between the Bio-$Oss^{(R)}$ and the OCS-$B^{(R)}$ groups.

Strength and Deformation Characteristics on Stabilized Pavement Geomaterials (II) : Numerical Analysis (안정처리된 도로하부 지반재료의 강도 및 변형특성 (II) : 수치해석)

  • Park, Seong-Wan;Ji, Jong-Keun
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.205-216
    • /
    • 2009
  • As a subsequent study, this paper presents a comparative evaluation of structural responses in asphalt pavements with stabilized foundations. The approach based on a finite element analysis which incorporates non-linear behaviors of pavement geomaterials is used to estimate each performance indicator under standard single axle loading condition. In addition, results from laboratory tests are used to provide physical and mechanical properties of stabilized geomaterials for analyzing various pavement structures. Changes in pavement responses with varying layer thickness and stabilizer contents were investigated. It is found that the effect of layer thickness and stabilizer content is a critical factor in structural response of stabilized pavements. Moreover, a design criterion is proposed for selecting minimum contents of stabilizer of coarse-grained geomaterials based on a result of unconfined compressive strength and proper layer thickness of foundations.

  • PDF

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

An Overview of Coal Mine Drainage Treatment (석탄광의 광산배수처리기술 현황 및 전망)

  • 정영욱
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • This study was undertaken to summarize of the efficiencies of the passive treatment system and suggest future studies for the solution of mine drainage problem. Flow rates of mine drainage from the abandoned coal mines are about 80,000 ton/day. Contaminated mine drainages over about 50 ton/day of flow rate were treated by passive treatment facilities such as Successive Alkalinity Producing Systems(SAPS), oxidation pond and oxic wetland. Chemical analysis for 13 passive coal mine treatment facilities showed that SAPS was the core of treatment facilities because the variation of Fe removal rates was relatively smaller than any other processes and re-leaching of Fe was not measured. The performance and life of SAPS depended on decrease in permeability and retention time due to accumulation of sludge. It is inferred that upgrade of design of the passive treatment system and in-situ treatment using underground void will be necessary for the amelioration of the mine drainage with high metal loading rates.

Chip Equalizer using Tap Selection Algorithm for Satellite Digital Multimedia Broadcasting (DMB) (위성 DMB용 탭 선택적 칩 등화 수신기)

  • Lee Sang-Joon;Lee Goon-Seop;Lee Dong-Hahk;Yu Jae-Hwang;Seo Jong-Soo;Byeon Jeong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.11 no.3 s.32
    • /
    • pp.302-310
    • /
    • 2006
  • ITU-R B.O. 1130-4 Digital System E adopted for Korean satellite DMB service is a multimedia broadcasting system based on DS-CDM-QPSK technique which broadcasts audio and video contents via the satellite or terrestrial gap-filler. However, Digital System E can not provide full loading services because the multi-channel interference (MCI) is increased due to the loss of orthogonality between signature waveforms in multipath fading channels. In this paper a chip equalizer using tap selection algorithm that enhances the receiving performance is proposed and compared to the conventional rake receiver for the satellite DMB system.