• Title/Summary/Keyword: loading performance

Search Result 2,636, Processing Time 0.036 seconds

Program Execution Speed Improvement using Executable Compression Method on Embedded Systems (임베디드 시스템에서 실행 가능 압축 기법을 이용한 프로그램 초기 실행 속도 향상)

  • Jeon, Chang-Kyu;Lew, Kyeung-Seek;Kim, Yong-Deak
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • The performance improvement of the secondary storage is very slow compared to the main memory and processor. The data is loaded from secondary storage to memory for the execution of an application. At this time, there is a bottleneck. In this paper, we propose an Executable Compression Method to speed up the initial loading time of application. and we examined the performance. So we implemented the two applications. The one is a compressor for Execution Binary File. and The other is a decoder of Executable Compressed application file on the Embedded System. Using the test binary files, we performed the speed test in the six files. At the result, one result showed that the performance was decreased. but others had a increased performance. the average increasing rate was almost 29% at the initial loading time. The level of compression had different characteristics of the file. And the performance level was dependent on the file compressed size and uncompress time. so the optimized compression algorithm will be needed to apply the execution binary file.

Performance of FRP confined and unconfined geopolymer concrete exposed to sulfate attacks

  • Alzeebaree, Radhwan;Gulsan, Mehmet Eren;Nis, Anil;Mohammedameen, Alaa;Cevik, Abdulkadir
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.201-218
    • /
    • 2018
  • In this study, the effects of magnesium sulfate on the mechanical performance and the durability of confined and unconfined geopolymer concrete (GPC) specimens were investigated. The carbon and basalt fiber reinforced polymer (FRP) fabrics with 1-layer and 3-layers were used to evaluate the performances of the specimens under static and cyclic loading in the ambient and magnesium sulfate environments. In addition, the use of FRP materials as a rehabilitation technique was also studied. For the geopolymerization process of GPC specimens, the alkaline activator has selected a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) with a ratio ($Na_2SiO_3/NaOH$) of 2.5. In addition to GPC specimens, an ordinary concrete (NC) specimens were also produced as a reference specimens and some of the GPC and NC specimens were immersed in 5% magnesium sulfate solutions. The mechanical performance and the durability of the specimens were evaluated by visual appearance, weight change, static and cyclic loading, and failure modes of the specimens under magnesium sulfate and ambient environments. In addition, the microscopic changes of the specimens due to sulfate attack were also assessed by scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that geopolymer specimens produced with nano-silica and fly ash showed superior performance than the NC specimens in the sulfate environment. In addition, confined specimens with FRP fabrics significantly improved the compressive strength, ductility and durability resistance of the specimens and the improvement was found higher with the increased number of FRP layers. Specimens wrapped with carbon FRP fabrics showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabrics. Both FRP materials can be used as a rehabilitation material in the sulfate environment.

Compressive Behavior of Concrete with Loading and Heating (가열 및 재하에 의한 콘크리트의 압축거동)

  • Kim, Gyu-Yong;Jung, Sang-Hwa;Lee, Tae-Gyu;Kim, Young-Sun;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 2010
  • The performance deformation of concrete can be caused by many factors such as load, thermal strain and creep at high temperature. Japan, Europe and America have been doing various experimental studies to solve these problems about thermal properties of concrete at high temperature, each study has generated different results due to a heating methods, heating hours, size of specimens and performance of a the loading, heating method, size of specimen and heating machine. There has been no unified experimental method so far. Therefore, this study reviewed experimental studies on the strength performance of concrete subject to heating and loading method. As a result, compressive strength of specimen prestressed increase in the temperature range of between $100^{\circ}C$ and about $400^{\circ}C$. Also, results can be analyzed as compare equation of compressive strength at elevated temperature with CEN and CEB code.

An Experimental Study on the Ensuring the Fire Resistance Performance of Non-Refractory Coating CFT (무내화피복 CFT 공법의 내화성능 확보를 위한 실험적 연구)

  • Lee, Ji-Hwan;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • In this study, tests were carried out to find out a method to ensure the fire resistance performance of high-performance non-refractory coating CFT columns. For the high performance concrete fabrication with 100MPa, blast furnace slag(BS) and steel and nylon fibers were used. It was found that the partial replacement with BS improved the fire resistance performance of the concrete. Based on the results of lab tests, the large fire test was conducted. For this test, the CFTs with the size of ${\phi}500{\times}4,200mm$ and the reinforcement of SS 400 steel were prepared and they were subjected to a loading condition. It was found that as the level of load increased, the level of fire resistance decreased. For example, In with the loading condition of 2000kN the CFT could resist the fire for over 240 minutes, whereas, with the loading condition of 3,000kN and 4000kN applying to equivalent CFTs, the resisting time against fire were 184 minutes, and 120 minutes, respectively.

Effect of bond slip on the performance of FRP reinforced concrete columns under eccentric loading

  • Zhu, Chunyang;Sun, Li;Wang, Ke;Yuan, Yue;Wei, Minghai
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • Concrete reinforced with fiber reinforced polymer (FRP) bars (FRP-RC) has attracted a significant amount of research attention in the last three decades. A limited number of studies, however, have investigated the effect of bond slip on the performance of FRP-RC columns under eccentric loading. Based on previous experimental study, a finite-element model of eccentrically loaded FRP-RC columns was established in this study. The bondslip behavior was modeled by inserting spring elements between FRP bars and concrete. The improved Bertero-Popov-Eligehausen (BPE) bond slip model with the results of existing FRP-RC pullout tests was introduced. The effect of bond slip on the entire compression-bending process of FRP-RC columns was investigated parametrically. The results show that the initial stiffness of bond slip is the most sensitive parameter affecting the compression-bending performance of columns. The peak bond stress and the corresponding peak slip produce a small effect on the maximum loading capacity of columns. The bondslip softening has little effect on the compression-bending performance of columns. The sectional analysis revealed that, as the load eccentricity and the FRP bar diameter increase, the reducing effect of bond slip on the flexural capacity becomes more obvious. With regard to bond slip, the axial-force-bending-moment (P-M) interaction diagrams of columns with different FRP bar diameters show consistent trends. It can be concluded from this study that for columns reinforced with large diameter FRP bars, the flexural capacity of columns at low axial load levels will be seriously overestimated if the bond slip is not considered.

An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section (단면의 형상에 따른 철근콘크리트 기둥의 폭발저항 성능 평가)

  • Kim, Han-Soo;Park, Jae-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • The alternative load path method based on a column removal scenario has been commonly used to protect building structures from being progressively collapsed due to probable blast loading. However, this method yields highly conservative result when the columns still have substantial load resisting capacity after blast. In this study, the behavior of RC columns with rectangular and circular sections under the blast loading was investigated and the remaining capacity of the partially damaged columns was compared. AUTODYN which is a hydrocode for the analysis of the structure on the impact and blast loading was used for this study. The blast loading was verified with the experiment results. The analysis results showed that the circular columns are preferable to the rectangular ones in respect of the blast resistance performance.

An Efficient Bit Loading Algorithm for OFDM-based Wireless LAN systems and Hardware Architecture Design (OFDM 기반의 무선 LAN 시스템을 위한 효율적인 비트 로딩 알고리즘 및 하드웨어 구조 설계)

  • 강희윤;손병직;정윤호;김근회;김재석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.153-160
    • /
    • 2004
  • In this paper, we propose an efficient bit loading algorithm for IEEE 802.11a wireless LAN systems. While a conventional bit loading algorithm uses the SNR value of each subcarrier, it is very difficult to estimate the exact SNR value in wireless LAN systems due to randomness of AWGN. Therefore, in order to solve this problem our proposed algorithm uses the channel frequency response instead of the SNR of each subcarrier. Through simulation results, we can obtain the performance gain of 3.5∼8㏈ at PER of 10-2 with the proposed bit loading algorithm while the conventional one obtains the performance gain of 0.5∼5㏈ at the same conditions. Also, the increased data rate can be confirmed 63Mbps. After the logic synthesis using 0.3${\mu}{\textrm}{m}$ CMOS technology, the logic gate count for the processor with proposed algorithm can be reduced by 34% in comparison with the conventional one.

Preliminary design and performance analysis of a radial inflow turbine (유기랭킨사이클용 반경류터빈의 예비설계 및 성능분석)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.735-743
    • /
    • 2015
  • The major component with a significant impact on the thermodynamic efficiency of the organic Rankine cycle is the turbine. Many difficulties occur in the turbine design of an organic Rankine cycle because the expansion process in an organic Rankine cycle is generally accompanied by a dramatic change in the working fluid properties. A precise preliminary design for a radial inflow turbine is hard to obtain using the classic method for selecting the loading and flow coefficients from the existing performance chart. Therefore, this study proposed a method to calculate the loading and flow coefficient based on the number of rotor vanes and thermodynamic design requirements. Preliminary design results using the proposed models were in fairly good agreement with the credible results using the commercial preliminary design software. Furthermore, a numerical analysis of the preliminary design results was carried out to verify the accuracy of the proposed preliminary design models, and most of the dependent variables, with the exception of the efficiency, were analyzed to meet the preliminary design conditions.

A Parallel Bulk Loading Method for $B^+$-Tree Using CUDA (CUDA를 활용한 병렬 $B^+$-트리 벌크로드 기법)

  • Sung, Joo-Ho;Lee, Yoon-Woo;Han, A;Choi, Won-Ik;Kwon, Dong-Seop
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.707-711
    • /
    • 2010
  • Most relational database systems provide $B^+$-trees as their main index structures, and use bulk-loading techniques for creating new $B^+$-trees on existing data from scratch. Although bulk loadings are more effective than inserting keys one by one, they are still time-consuming because they have to sort all the keys from large data. To improve the performance of bulk loadings, this paper proposes an efficient parallel bulk loading method for $B^+$-trees based on CUDA, which is a parallel computing architecture developed by NVIDIA to utilize computing powers of graphic processor units for general purpose computing. Experimental results show that the proposed method enhance the performance more than 70 percents compared to existing bulk loading methods.

Effects of short term creatine loading on performance, plasma components and anaerobic power in taekwondo player (단기간의 크레아틴 섭취가 태권도 선수의 운동수행 능력, 혈장요소 및 무산소성 파워에 미치는 영향)

  • Kim Sun-Ho;Ku Min;Min Bome-Il;Lee Hong-Min;Ko Young-Ho;Yoon Young-Bok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.191-200
    • /
    • 2005
  • The main purpose of the present study was to find the effect of short term creating loading on repeated bouts of kicking, plasma creating phosphokinase and anaerobic power in male taekwondo player from high school. Sixteen male were randomly assigned to two groups. They were tested before and after 6 days of placebo$(4{\times}5g\;glucose\;d^{-1},\;N=11)$ or Creatine monohydrate loading$(consume\;0.3g\;kg^{-1},\;N=11)$. Repeated bouts of kicking was tested through maximal front kicking continuously for 1 minute and took a rest for 30 seconds, after 30 seconds rest they should have to start kicking again. They repeated it 2 times more(total 3 sets) and the kicking times were measured each sets. Also, body composition, CPK, mean power and peak power were measured before and after experiment. The following results were obtained from this study; 1. The kicking test was significantly increased at 1, 2, 3 sets only in creatine loading group(p<.05, p<.01). 2. Only creatine loading group was significantly increased of plasma creatine phosphokinase(p<.01). 3. Only creatine loading group were significantly increased both of mean power and peak power(p<.05; p<.01). These results suggest that short creatine loading was effective diet protocol in taekwondo player from male high school.

  • PDF