• Title/Summary/Keyword: loading performance

Search Result 2,637, Processing Time 0.571 seconds

Flexural performance of prestressed UHPC beams with different prestressing degrees and levels

  • Zongcai Deng;Qian Li;Rabin Tuladhar;Feng Shi
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.379-391
    • /
    • 2024
  • The ultra-high performance concrete (UHPC) mixed with hybrid fibers has excellent mechanical properties and durability, and the hybrid fibers have a certain impact on the bearing capacity, deformation capacity, and crack propagation of beams. Many scholars have conducted a series of studies on the bending performance of prestressed UHPC beams, but there are few studies on prestressed UHPC beams mixed with hybrid fibers. In this study, five bonded post-tensioned partially prestressed UHPC beams mixed with steel fibers and macro-polyolefin fibers were poured and subjected to four-points symmetric loading bending tests. The effects of different prestressing degrees and prestressing levels on the load-deflection curves, crack propagation, failure modes and ultimate bearing capacity of beams were discussed. The results showed that flexural failure occurred in the prestressed UHPC beams with hybrid fibers, and the integrity of specimens was good. When the prestressing degree was the same, the higher the prestressing level, the better the crack resistance capacity of UHPC beams; When the prestressing level was 90%, increasing the prestressing degree was beneficial to improve the crack resistance and ultimate bearing capacity of UHPC beams. When the prestressing degree increased from 0.41 to 0.59, the cracking load and ultimate load increased by 66.0% and 41.4%, respectively, but the ductility decreased by 61.2%. Based on the plane section assumption and considering the bridging effect of short fibers, the cracking moment and ultimate bearing moment were calculated, with good agreement between the test and calculated values.

Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response

  • Kang, Suhee;Pawar, Rajendra C.;Park, Tae Joon;Kim, Jin Geum;Ahn, Sung-Hoon;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • We have successfully fabricated 3D (3-dimensional) nanostructures of $TiO_2$ coated with a $g-C_3N_4$ layer via hydrothermal and sintering methods to enhance photoelectrochemical (PEC) performance. Due to the coupling of $TiO_2$ and $g-C_3N_4$, the nanostructures exhibited good performance as the higher conduction band of $g-C_3N_4$, which can be combined with $TiO_2$. To fabricate 3D nanostructures of $g-C_3N_4/TiO_2$, $TiO_2$ was first grown as a double layer structure on FTO (Fluorine-doped tin oxide) substrate at $150^{\circ}C$ for 3 h. After this, the $g-C_3N_4$ layer was coated on the $TiO_2$ film at $520^{\circ}C$ for 4 h. As-prepared samples were varied according to loading of melamine powder, with values of loading of 0.25 g, 0.5 g, 0.75 g, and 1 g. From SEM and TEM analysis, it was possible to clearly observe the 3D sample morphologies. From the PEC measurement, 0.5 g of $g-C_3N_4/TiO_2$ film was found to exhibit the highest current density of $0.12mA/cm^2$, along with a long-term stability of 5 h. Compared to the pristine $TiO_2$, and to the 0.25 g, 0.75 g, and 1 g $g-C_3N_4/TiO_2$ films, the 0.5 g of $g-C_3N_4/TiO_2$ sample was coated with a thin $g-C_3N_4$ layer that caused separation of the electrons and the holes; this led to a decreasing recombination. This unique structure can be used in photoelectrochemical applications.

Adhesive Strength and Electrochemical Properties of Li(Ni0.5Co0.2Mn0.3)O2Electrodes with Lean Binder Composition (바인더 함량에 따른 Li(Ni0.5Co0.2Mn0.3)O2 전극의 접착력 및 전기화학 성능에 관한 연구)

  • Roh, Youngjoon;Byun, Seoungwoo;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.3
    • /
    • pp.47-54
    • /
    • 2018
  • To maximize the areal capacity($mAh\;cm^{-2}$) of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$(NCM523) electrode with the same loading level of $15mg\;cm^{-2}$, three NCM523 electrodes with 4, 2, and 1 wt% poly(vinylidene fluoride)(PVdF) binder content are fabricated. Due to the delamination issue of electrode composite at the edge during punching process, the 1 wt% electrode is excluded for further evaluation. When the PVdF binder content decreases from 4 to 2 wt%, both adhesion strength and shear stress decrease from 0.4846 to $0.2627kN\;m^{-1}$ by -46% and from 3.847 to 2.013 MPa by -48%, respectively. Regardless of these substantial decline of mechanical properties, their initial electrochemical properties such as initial coulombic efficiency and voltage profile are almost the same. However, owing to high loading level, the 2 wt% electrode not only exhibits worse cycle performance than the 4 wt% electrode, but also cannot maintain its mechanical integrity only after 80 cycles. Therefore, if the binder content is reduced to increase the area capacity, the mechanical properties as well as the cycle performance must be carefully evaluated.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.

Behaviors of a Vault Door Made of Ultra High Performance Concrete and Strengthening Structures Subjected to Extreme Impact Load and Ultra High Heat (초고강도콘크리트와 보강 구조물을 사용한 금고 충전부의 초고열과 극한충격파괴에 대한 거동)

  • Oh, Seok-Min;Kim, Tae-Wan;Hong, Sung-Nam;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.565-572
    • /
    • 2008
  • It is a trend to increase safekeeping properties in financial company as the world economy situation has been globalized and advanced. The development of a securable vault door resisting to malicious trespass is needed. Therefore, this study focuses on developing high performance concrete placed at the inside of the vault door, and all materials used in this study is easy to obtain in domestic considering economic competitiveness. The compressive strength over 170 MPa was targeted, and structurally strengthening was also planned in order to resist to over $3,000^{\circ}C$ heating by torch and extreme impact loading by hammer drilling machine. Several types of fibers and reinforcing structures were used in order to resist those external heating and loading. This purpose was required to satisfy UL 608 standard of a vault door. Consequently, the result from this study is expected to be applied to construction field of major facilities, which should guarantee the safety from an external attack such as terror.

Cyclic Loading Test for TSC Beam - PSRC Column Connections (TSC 합성보 - PSRC 합성기둥 접합부에 대한 주기하중 실험)

  • Hwang, Hyeon Jong;Eom, Tae Sung;Park, Hong Gun;Lee, Chang Nam;Kim, Hyoung Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.6
    • /
    • pp.601-612
    • /
    • 2013
  • In the present study, details of the TSC beam-to-PSRC column connection for low and middle seismic zones were developed. For ease construction, the top and bottom flanges of the steel section of the TSC beam were discontinuous at the joint face on purpose, while the web passes through the joint. Thus, tensile resistance of the top and bottom flanges is not considered in the calculation of nominal strength of the connection. Cyclic loading tests on two interior connections and an exterior connection were performed to verify the seismic performance. The test parameter for two interior connections was the depth of the TSC beams: 600 and 700 mm including the slab depth. The test results showed that the nominal strength of the connections predicted by KBC 2009 correlated well with the test results. The connection specimens exhibited relatively good deformation and energy dissipation capacities, greater than the requirements for the ordinary and intermediate moment frames. Ultimately, the connection specimens were failed at the story drift ratios of 3.0 to 4.0 % due to local buckling and tensile fracture of the web of the TSC beam passing through the joint. By modifying the existing provisions of ASCE, the joint shear strength of the TSC beam-PSRC column connection was evaluated.

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter (고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거)

  • Sung, Moon Sung;Chang, Duk;Seo, Seong Cheol;Chung, Bo Rim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF

A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms (이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구)

  • Choi, Sung Mo;Yun, Yeo Sang;Kim, Yo Suk;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.579-589
    • /
    • 2003
  • Most beam-to-column connections are symmetrically reinforced because of the reverse action caused by earthquakes. However, in weak-earthquake regions like Korea, asymmetrically reinforced connections could be used. In particular, the connections between concrete-filled tube (CFT) column and H-shape beam could be applied using a simplified lower diaphragm. The tensile capacity or Combined Cross Diaphragm for upper reinforcing was tested using a simple tension test. Four types for lower reinforcing combined Cross, none, horizontal T-bar, and vertical plate were tested using the ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat, bar transmit tensile stress from the beam's bottom flange to filled concrete. All test specimens satisfied 0.01 radian inelastic rotational requirement in ordinary moment frame of AISC seismic provision. According to the results of the parametric studies simplified lower diaphragms demonstrated outstanding strength, stiffness, and plastic deformation capacity which could lead to more sufficient seismic performance in the field.

LTPP-SPS : Evaluation of Structural Capacity on Asphalt Pavement Reinforced with Glass Fiber (LTPP-SPS : 섬유보강 아스팔트 포장의 구조적 성능 평가)

  • Jeon, Sung-Il;Kim, Boo-Il;Kim, Jo-Sun;Lim, Kwang-Soo
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.281-292
    • /
    • 2008
  • In Korea-LTPP(Long Tenn Pavement Performance) project, the full depth asphalt pavement test sections are constructed on the national highway to evaluate the structural capacity of asphalt pavement reinforced with glass fiber. Truck loading test and FWD test were performed to measure the structural capacity of test sections. Test results showed that the reinforcement of glass fiber installed at between surface and intermediate asphalt layer decreased the strain at the bottom of surface layer and moved up the stress neutral axis in asphalt layer. As a result, the tensile stress was developed at the bottom of intermediate asphalt layer of reinforced asphalt pavement, while the compressive stress was developed at the bottom of intermediate asphalt layer of unreinforced asphalt pavement. On the other hand, the tensile strain at the bottom of asphalt base layer didn't show a difference between glass fiber reinforced and unreinforced pavements. From the FWD test, it was shown that the surface deflection of asphalt pavement reinforced with glass fiber decreased 24 percents comparing to that of unreinforced asphalt pavement. This shows that the reinforcement with glass fiber appears to improve the rutting resistance of asphalt pavement.

  • PDF