• Title/Summary/Keyword: loading performance

Search Result 2,636, Processing Time 0.03 seconds

Effects of loading history on seismic performance of SRC T-shaped column, Part I: Loading along web

  • Wang, J.;Liu, Z.Q.;Xue, J.Y.;Hu, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.193-201
    • /
    • 2018
  • This paper describes an experimental study on the seismic performance of steel reinforced concrete (SRC) T-shaped columns. The lateral loads were applied along the web of the column with different loading histories, such as monotonic loading, mixed loading of variable amplitude cyclic loading and monotonic loading, constant amplitude cyclic loading and variable amplitude cyclic loading. The failure modes, load-displacement curves, characteristic loads and displacements, ductility, strength and stiffness degradations and energy dissipation capacity of the column were analyzed. The effects of loading history on the seismic performance were focused on. The test results show that the specimens behaved differently in the aspects of the failure mode subject to different loading history, although all the failure modes can be summarized as flexural failure. The hysteretic loops of specimens are plump, and minimum values of the failure drift angles and ductility coefficients are 1/24 and 4.64, respectively, which reflect good seismic performance of SRC T-shaped column. With the increasing numbers of loading cycles, the column reveals lower bearing capacity and ductility. The strength and stiffness of the column with variable amplitude cyclic loading degrades more rapidly than that with constant amplitude cyclic loading, and the total cumulative dissipated energy of the former is less.

A Study on the Performance Characteristics of Direct Methanol Fuel Cell with Changing of Catalyst Loading (촉매량 변화에 따른 직접 메탄올 연료전지의 성능 특성에 관한 연구)

  • Seo, Sang-Hern;Lee, Chang-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.467-473
    • /
    • 2008
  • This study is to investigate the influence of catalyst loading quantity on the direct methanol fuel cell (DMFC) performance. In this paper, Pt-Ru and Pt-black loading as the catalyst were varied from 1 to $4mg/cm^2$ at the anode and cathode, respectively. The experiment was conducted with single fuel cell consisted of $5cm^2$ effective electrode area, serpentine type flow pattern and Nafion 117 membrane. Also, AC impedance and methanol crossover current were measured to investigate the performance loss precisely. As a result, the performance of fuel cell was significantly increased with the increase of cathode catalyst loading. However, the performance did not increase further above a certain Pt-Ru catalyst loading as the increase of anode catalyst loading.

Study on seismic performance of SRC special-shaped columns with different loading angles

  • Qu, Pengfei;Liu, Zuqiang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.789-801
    • /
    • 2022
  • In order to study the influence of loading angles on seismic performance of steel reinforced concrete (SRC) special-shaped columns, cyclic loading tests and finite element analysis (FEA) were both carried out. Seven SRC special-shaped columns, including two L-shaped columns, three T-shaped columns and two cross-shaped columns, were tested, and the failure patterns of the columns with different loading angles were obtained. Based on the tests, the FEA models of SRC special-shaped columns with different loading angles were established. According to the simulation results, hysteretic curves and seismic performance indexes, including bearing capacity, ductility, stiffness and energy dissipation capacity, were analyzed in detail. The results showed that the failure patterns were different for the columns with the same section and different loading angles. With the increasing of loading angles, the hysteretic curves became fuller and the bearing capacity and initial stiffness appeared increasing tendency, but the energy dissipation capacity changed insignificantly. When the loading angle changed, the ductility got better with the larger area of steel at the failure side for the unsymmetrical section and near the neutral axis for the symmetrical section, respectively.

Analysis of the Influence Factors of Data Loading Performance Using Apache Sqoop (아파치 스쿱을 사용한 하둡의 데이터 적재 성능 영향 요인 분석)

  • Chen, Liu;Ko, Junghyun;Yeo, Jeongmo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.77-82
    • /
    • 2015
  • Big Data technology has been attracted much attention in aspect of fast data processing. Research of practicing Big Data technology is also ongoing to process large-scale structured data much faster in Relatioinal Database(RDB). Although there are lots of studies about measuring analyzing performance, studies about structured data loading performance, prior step of analyzing, is very rare. Thus, in this study, structured data in RDB is tested the performance that loads distributed processing platform Hadoop using Apache sqoop. Also in order to analyze the influence factors of data loading, it is tested repeatedly with different options of data loading and compared with data loading performance among RDB based servers. Although data loading performance of Apache Sqoop in test environment was low, but in large-scale Hadoop cluster environment we can expect much better performance because of getting more hardware resources. It is expected to be based on study improving data loading performance and whole steps of performance analyzing structured data in Hadoop Platform.

On Diagonal Loading for Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

  • Lin, Jing-Ran;Peng, Qi-Cong;Shao, Huai-Zong
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.50-58
    • /
    • 2007
  • Robust adaptive beamforming based on worst-case performance optimization is investigated in this paper. It improves robustness against steering vector mismatches by the approach of diagonal loading. A closed-form solution to optimal loading is derived after some approximations. Besides reducing the computational complexity, it shows how different factors affect the optimal loading. Based on this solution, a performance analysis of the beamformer is carried out. As a consequence, approximated closed-form expressions of the source-of-interest power estimation and the output signalto-interference-plus-noise ratio are presented in order to predict its performance. Numerical examples show that the proposed closed-form expressions are very close to their actual values.

  • PDF

Shear Performance Evaluation of Cast-in Specialty Inserts in Cracked Concrete according to Cyclic Loading Patterns (반복하중 패턴에 따른 균열 콘크리트에 매입된 선설치 인서트 앵커의 전단성능 평가)

  • Jeong, Sang-Deock;Oh, Chang-Soo;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, a novel cast-in specialty insert was developed in Korea as an anchor for lightweight pipe supports, including fire-protection pipes. As these pipe supports and anchors play a critical role in transferring loads of fire-protection pipes to structural members, it is crucial to evaluate their seismic performance before applying the newly developed insert. In this study, the seismic shear performance of the insert anchors was evaluated through cyclic loading tests based on the loading protocols of ACI 355.2 and FEMA 461. Initially, five monotonic loading tests were conducted on the insert anchors in cracked concrete, followed by cyclic loading tests based on the monotonic test results. The findings revealed that the insert anchors exhibited negligible decrease in shear strength even after cyclic loading. Furthermore, a comparison of the maximum load and displacement of the insert anchors obtained under the loading protocols of ACI 355.2 and FEMA 461 was performed to investigate the applicability of the FEMA 461 loading protocol for anchor performance evaluation.

A study on the comparison in different loading methods for pin-on-disk wear test system (마멸시험기의 하중부과 방법에 대한 비교 연구)

  • 서만식;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.335-341
    • /
    • 1998
  • In this study, the dynamic characteritics in various loading methods for wear tester were investigated experimentally. As for the dead-weight, the pneumatic, and the hydraulic method, the load control performance against external disturbances was estimated under the several loading conditions like the different sliding speed, the varied normal load, and the misaligument. The hydraulic loading method showed the most stable loading performance of all the loading methods in the experiment.

  • PDF

The Effect of Volume and Precious Metal loading on the Performance of Pd+Rh Three Way Catalysts (Pd+Rh 삼원촉매에서 촉매체적 및 귀금속량이 정화성능에 미치는 영향)

  • 김계윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.389-397
    • /
    • 1999
  • Recently the use of Pd catalyst have been continued to expand because of cost avaliabilityand performance advantages. Especially the Pd+Rh catalyst instead of the Pt+Rh catalyst had been used for most of three way catalysts because of the more stringent emission standards and its higher temperature effectiveness. The main purpose of this study is to investigate the design parameter impacts on the Pd+Rh cat-alyst for the automotive exhaust catalysts application. This study was investigated on the catalyst efficiency for the volume and the precious metal loading of the Pd+Rh ceramic monolithic cata-lyst. And experiments concerning the effects of volume and precious metal loading on Pd+Rh three way catalysts were conducted to examined the catalyst light-off temperature and conver-sion efficiency on higher volume demonstrated almost similar performance. But their effects on higher precious metal loading demonstrated considerably better performance.

  • PDF

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.

Adaptive Group Loading and Weighted Loading for MIMO OFDM Systems

  • Shrestha, Robin;Kim, Jae-Moung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1959-1975
    • /
    • 2011
  • Adaptive Bit Loading (ABL) in Multiple-Input Multiple-Output Orthogonal Frequency-Division Multiplexing (MIMO-OFDM) is often used to achieve the desired Bit Error Rate (BER) performance in wireless systems. In this paper, we discuss some of the bit loading algorithms, compare them in terms of the BER performance, and present an effective and concise Adaptive Grouped Loading (AGL) algorithm. Furthermore, we propose a "weight factor" for loading algorithm to converge rapidly to the final solution for various data rate with variable Signal to Noise Ratio (SNR) gaps. In particular, we consider the bit loading in near optimal Singular Value Decomposition (SVD) based MIMO-OFDM system. While using SVD based system, the system requires perfect Channel State Information (CSI) of channel transfer function at the transmitter. This scenario of SVD based system is taken as an ideal case for the comparison of loading algorithms and to show the actual enhancement achievable by our AGL algorithm. Irrespective of the CSI requirement imposed by the mode of the system itself, ABL demands high level of feedback. Grouped Loading (GL) would reduce the feedback requirement depending upon the group size. However, this also leads to considerable degradation in BER performance. In our AGL algorithm, groups are formed with a number of consecutive sub-channels belonging to the same transmit antenna, with individual gains satisfying predefined criteria. Simulation results show that the proposed "weight factor" leads a loading algorithm to rapid convergence for various data rates with variable SNR gap values and AGL requires much lesser CSI compared to GL for the same BER performance.