• Title/Summary/Keyword: loading angle

Search Result 748, Processing Time 0.024 seconds

Failure Path of the Brown-oxide-coated Copper-based Leadframe/EMC Interface under Mixed-Mode Loading (혼합하중 조건하에서 갈색산화물이 입혀진 구리계 리드프레임/EMC 계면의 파손경로)

  • 이호영
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.491-499
    • /
    • 2003
  • Copper-based leadframe sheets were oxidized in a hot alkaline solution to form brown-oxide layer on the surface and molded with epoxy molding compound (EMC). The brown-oxide-coated leadframe/EMC joints were machined to form sandwiched double-cantilever beam (SDCB) specimens and sandwiched Brazil-nut (SBN) specimens for the purpose of measuring the fracture toughness of leadframe/EMC interfaces. The SDCB and the SBN specimens were designed to measure the fracture toughness of the leadframe/EMC interfaces under nearly mode-I loading and mixed-mode (mode I + mode II) loading conditions, respectively. Fracture surfaces were analyzed by various equipment such as glancing-angle XRD, SEM, AES, EDS and AFM to elucidate failure path. Results showed that failure occurred irregularly in the SDCB specimens, and oxidation time of 2 minutes divided the types of irregular failures into two classes. The failure in the SBN specimens was quite different from that in the SDCB specimens. The failure path in the SBN specimens was not dependent on the phase angle as well as the distance from tips of pre-cracks.

Analysis of Dynamics of Slider in Dynamic Loading Process considering Collision (충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석)

  • Kim, Bum-Joon;Rhim, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.968-973
    • /
    • 2003
  • Dynamic L/UL system has many merits, but it can develop an undesirable collision during dynamic loading process. In this paper, the dynamics of negative pressure pico slider during the loading process was investigated by numerical simulation. A simplified L/UL model for the suspension system was presented, and a simulation code was built to analyze the motion of the slider. A slider deigns have been simulated at various disk rotating speeds, skew angles of slider. By selection an optimal RPM and pre-skew angle, we can decrease the amount of collision and smoothen the loading process for a given slider-suspension design.

  • PDF

Analysis of Slider Dynamics in Loading Process considering Collision (충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석)

  • Kim, Bum-Joon;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.144-149
    • /
    • 2006
  • Dynamic L/UL(Load/Unload) system has many merits. but it may happen an undesirable collision during the dynamic loading process. In this paper, the dynamics of negative pressure pico-slider was investigated through numerical simulation during the loading process. A simplified L/UL model for the suspension system has been presented and a simulation code has been developed to analyze the motion of the slider. A slider design has been simulated at various disk rotating speeds, skew angles of slider. We can decrease the possibility of collision and smoothen the loading process for a given slider-suspension design by selection an optimal rpm and pre-skew angle.

  • PDF

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.

Mixed Mode Fatigue Crack Propagation Behavior due to The Variation of Stress Ratio (응력비의 변화에 따른 혼합 모드 피로 균열 전파 거동)

  • Song, Sam-Hong;Choi, Ji-Hoon;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.286-291
    • /
    • 2001
  • Most cracks in the structure occur under mixed mode loadings and those propagation depend on the stress ratio very much. So, it is necessary to study the fatigue behavior under mixed mode loading as stress ratio changes. In this paper, fatigue crack propagation behavior was investigated respectively at stress ratio 0.1, 0.3, 0.5, 0.7 and we change loading application angle to $0^{\circ},\;30^{\circ},\;60^{\circ}$ to apply various loading. mode. The mode I and II stress intensity factors of CTS specimen used in this study were calculated by displacement extrapolation method using FEM(ABAQUS). Using both the study through the experiment and the theoretical study through FEM analysis, we studied the relation between crack propagation rate and stress intensity factor range at each loading mode due to the variation of stress ratio. Also, when the crack propagated under given stress condition and given loading mode condition, we studied what the dominant factors of the crack propagation rate were at each case.

  • PDF

Fatigue Crack Propagation Behavior in CTS Specimen Under Mixed-Mode Loading with Hole Defefects (원공 결함을 갖는 CTS 시험편의 혼합모드 하중 하에서의 피로균열 전파거동)

  • Song, Sam-Hong;Shin, Seung-Man;Lee, Jeong-Moo;Seo, Ki-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.137-142
    • /
    • 2003
  • In this study, the propagation behavior of fatigue crack effected hole defects was investigated under mixed-mode I+II loading. To create mixed-mode stress field at crack tip, the compact tension shear (CTS) specimen and loading device were used in this tests. The propagation experiments of fatigue crack were performed by changing of the loading application angle(${\phi}$) and the distance(L) estimated from pre-crack tip to hole center located side by side by side with a pre-crack. As L changes, the variation for propagation aspect of fatigue crack, fatigue life and crack propagation rate were examined under mixed-mode loading. Under mixed-mode loading, the propagation rate of fatigue crack increased while the propagation direction changed dramatically because of the interference of hole defects.

  • PDF

An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

  • Kwon, Oh Kyun;Kim, Jin-Bok;Kweon, Hyuck-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-97
    • /
    • 2014
  • In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L) moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D), reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150-360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.

The Biomecanical Analysis of Taekwondo Footwear (태권도화의 운동역학적 분석)

  • Jin, Young-Wan;Kawk, Yi-Sub
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.105-114
    • /
    • 2007
  • The purpose of this study was to compare the biomechanical difference of barefoot and two types taekwondo footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. How to an effect on human body which studied a kinematics and kinetics from 8 college students during experiments. This study imposes several conditions by barefoot and two types of taekwondo footwear ran under average $2.56{\pm}0.21\;m$/sec by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). showed that averagely was distinguished from other factors, and did not show about that.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION IN ALL-CERAMIC CROWNS WITH VARIOUS FINISH LINE DESIGNS AND INCISAL REDUCTIONS UNDER DIFFERENT LOADING CONDITIONS (전부 도재관을 위한 지대치의 마무리선 형태와 절단연 삭제량 및 교합력 작용점에 따른 응력 분포에 관한 삼차원 유한요소법적 연구)

  • Koh, Eun-Suk;Lee, Sun-Hyang;Yang, Jae-Ho;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.742-766
    • /
    • 1997
  • The purpose of this study was to determine the effect of finish line design, amount of incisal reduction, and loading condition on the stress distribution in anterior all-ceramic crowns. Three-dimensional finite element models of an incisor all-ceramic crown with 3 different finish line designs : 1) shoulder with sharp line angle 2) shoulder with rounded line angle 3) chamfer : and 2 different incisal reductions : 2mm and 4mm were developed. 300 N force with the direction of 45 degree to the long axis of the tooth was applied at 3 different positions : A) incisal 1/3, B) incisal edge, C) cervical 1/5. Stresses developed in ceramic and cement were analyzed using three-dimensional finite element method. The results were as follows : 1. Stresses were concentrated in the margin region, which were primarily compressive in the labial and tensile in the lingual. 2. Stresses were larger in the area near line angle than on the crown surface of the margin region. In case of shoulder with sharp line angle, stresses were highly concentrated in the porcelain near line angle. 3. At the interface between porcelain and cement and at the porcelain above the margin on crown surface, stresses were the highest in chamfer, and decreased in shoulder with sharp line angle and shoulder with rounded line angle, respectively. 4. At the interface between cement and abutment on crown surface, stresses were the highest in shoulder with sharp line angle, and decreased in shoulder with rounded line angle and chamfer, respectively. 5. The amount of incisal reduction had little influence on the stress distribution in all-ceramic crowns. 6. When load was applied at the incisal edge, higher stresses were developed in the margin region and the incisal edge than under the other loading conditions. 7. When load was applied at the cervical 1/5, stresses were very low as a whole.

  • PDF

Assessing asymmetric steel angle strength under biaxial eccentric loading

  • Shu-Ti Chung;Wei-Ting Hsu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.517-526
    • /
    • 2024
  • Due to the asymmetric cross-section of unequal-angle steel, the application of loads can induce axial rotation, leading to a series of buckling failure behaviors. Special attention must be paid during the design process. The present study aims to analyze the structural behavior of asymmetric steel angle members under various eccentric loading conditions, considering the complex biaxial bending interaction that arises when the angle steel is connected to the panel. Several key factors are investigated in this paper, including the effects of uniaxial and biaxial eccentricity on the structural behavior and the eccentric axial compression strength of long and short legs at different load application points. Potential risks associated with the specified load points, based on the AISC specifications, are also discussed. The study observed that the strength values of the members exhibited significant changes when the eccentric load deviates from the specified point. The relative position of the eccentric load point and the slenderness ratio of the member are critical influencing factors. Overall, this research intends to enhance the accuracy and reliability of strength analysis methods for asymmetric single angle steel members, providing valuable insights and guidance for a safer and more efficient design.