• 제목/요약/키워드: load-strain analysis

검색결과 1,105건 처리시간 0.03초

BWIM Using Measured Acceleration and Strain Data

  • Paik, In-Yeol;Lee, Seon-Dng;Shin, Soo-Bong
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.233-245
    • /
    • 2011
  • A new BWIM(bridge weigh-in-motion) algorithm using both measured strain and acceleration data is proposed. To consider the effects of bridge vibration on the estimation of moving loads, the dynamic governing equation is applied with the known stiffness and mass properties but damping is ignored. Dynamic displacements are computed indirectly from the measured strains using the beam theory and accelerations are measured directly by accelerometers. To convert a unit moving load to its equivalent nodal force, a transformation matrix is determined. The incompleteness in the measured responses is considered in developing the algorithm. To examine the proposed BWIM algorithm, simulation studies, laboratory experiments and field tests were carried. In the simulation study, effects of measurement noise and estimation error in the vehicle speed on the results were investigated.

무아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석 (Thermo-mechanical and Flexural Analysis of WB-PBGA Package Using Moire Interferometry)

  • ;주진원
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1302-1308
    • /
    • 2002
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) package are characterized by high sensitive moire interferometry. Moire fringe patterns are recorded and analyzed for several bending loads and temperatures. At the temperature higher than $100^{\circ}C$, the inelastic deformation in solder balls become more dominant, so that the bending of the molding compound decreases while temperature increases. The deformation caused by thermally induced bending is compared with that caused by mechanical bending. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder.

Rayleigh-Ritz optimal design of orthotropic plates for buckling

  • Levy, Robert
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.541-552
    • /
    • 1996
  • This paper is concerned with the structural optimization problem of maximizing the compressive buckling load of orthotropic rectangular plates for a given volume of material. The optimality condition is first derived via variational calculus. It states that the thickness distribution is proportional to the strain energy density contrary to popular claims of constant strain energy density at the optimum. An engineers physical meaning of the optimality condition would be to make the average strain energy density with respect to the depth a constant. A double cosine thickness varying plate and a double sine thickness varying plate are then fine tuned in a one parameter optimization using the Rayleigh-Ritz method of analysis. Results for simply supported square plates indicate an increase of 89% in capacity for an orthotropic plate having 100% of its fibers in $0^{\circ}$ direction.

The role of softening in the numerical analysis of R.C. framed structures

  • Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.785-801
    • /
    • 1997
  • Reinforced Concrete beams with tension and compression softening material constitutive laws are studied. Energy-based and non-local regularisation techniques are presented and applied to a R.C. element. The element characteristics (sectional tangent stiffness matrix, element tangent stiffness matrix restoring forces) are directly derived from their symbolic expressions through numerical integration. In this way the same spatial grid allows us to obtain a non-local strain estimate and also to sample the contributions to the element stiffness matrix. Three examples show the spurious behaviors due to the strain localization and the stabilization effects given by the regularisation techniques, both in the case of tension and compression softening. The possibility to overestimate the ultimate load level when the non-local strain measure is applied to a non softening material is shown.

Analytical model of stress-strain curve for foamed cellular concrete in compression

  • Facundo A. Retamal;Viviana C. Rougier
    • Advances in materials Research
    • /
    • 제13권5호
    • /
    • pp.355-374
    • /
    • 2024
  • Several mathematical models describe the compressive behaviour of different types of concretes, but no specific one for foamed cellular concrete (FCC) has been developed. In this work, simple compression tests on FCC specimens of different mixes were conducted to study this material's compression behaviour curve until failure. Using continuous load and displacement measurement equipment, it was possible to obtain stress-strain curves up to peak for FCC of different strengths (from 1.20 to 47.34 MPa). Elastic modulus, compressive strength and failure strain values were also determined. Through the analysis of the mentioned curves, a mathematical model of them was obtained, through which it is possible to describe the compression behaviour of FCC up to failure. The comparison between the predicted curve against experimental data shows the effectiveness of the proposed model.

탄소성 파괴역학 모델에 근거한 초고강도 섬유보강 콘크리트 I 형보의 비선형 유한요소해석 (Nonlinear Finite Element Analysis of UHPFRC I-Beam on the Basis of an Elastic-Plastic Fracture Model)

  • 한상묵;궈이홍
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.199-209
    • /
    • 2009
  • 본 논문은 단조하중을 받는 초고강도 섬유보강 콘크리트 I형보의 파괴거동에 대한 3차원 유한요소해석을 수행하였다. 보통 또는 고강도 콘크리트의 구성방정식과 달리 초고강도 섬유보강 콘크리트의 재료적 특성을 나타내기 위해 인장변형률 경화관계를 고려한 탄소성 파괴역학 모델을 제안하였다. 인장영역에서는 인장경화 변형률을 고려한 다차원적 균열기준을 정의하였고, 압축영역에서는 associated flow rule을 고려한 Drucker-Prager기준을 채택하여 해석을 수행하였다. UHPFRCI형보의 지간, 프리스트레스 하중 및 단면의 영향에 관한 수치해석 결과를 실험 거동와 비교한 결과 정확한 해석 결과를 보여주었다.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

Seismic performance of prefabricated bridge columns with combination of continuous mild reinforcements and partially unbonded tendons

  • Koem, Chandara;Shim, Chang-Su;Park, Sung-Jun
    • Smart Structures and Systems
    • /
    • 제17권4호
    • /
    • pp.541-557
    • /
    • 2016
  • Prefabricated bridge substructures provide new possibility for designers in terms of efficiency of creativity, fast construction, geometry control and cost. Even though prefabricated bridge columns are widely adopted as a substructure system in the bridge construction project recently, lack of deeper understanding of the seismic behavior of prefabricated bridge substructures cause much concern on their performance in high seismic zones. In this paper, experimental research works are presented to verify enhanced design concepts of prefabricated bridge piers. Integration of precast segments was done with continuity of axial prestressing tendons and mild reinforcing bars throughout the construction joints. Cyclic tests were conducted to investigate the effects of the design parameters on seismic performance. An analytical method for moment-curvature analysis of prefabricated bridge columns is conducted in this study. The method is validated through comparison with experimental results and the fiber model analysis. A parametric study is conducted to observe the seismic behavior of prefabricated bridge columns using the analytical study based on strain compatibility method. The effects of continuity of axial steel and tendon, and initial prestressing level on the load-displacement response characteristics, i.e., the strain of axial mild steels and posttensioned tendon at fracture and concrete crushing strain at the extreme compression fiber are investigated. The analytical study shows the layout of axial mild steels and posttensioned tendons in this experiment is the optimized arrangement for seismic performance.

에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어 (Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices)

  • 박지훈;김길환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

곡판의 맞대기 용접변형 거동에 관한 연구 (On the Weld-Induced Deformation Analysis of Curved Plates)

  • 이주성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.201-204
    • /
    • 2006
  • A three-dimensional finite element (FEM) model has been developed to simulate the deformation due to bead on plate welding of curved plates with curvature in the weld direction. By using traditional method such as thermal-elastic-plastic FEM, the weld-induced deformation can be predicted accurately. However, this method is not practical approach to analyze the deformation of large and complex structures such as ship hull structures in view of time and cost. This study is classified from the aspect of equivalent load based on inherent strain near the weld line. Therefore, the residual deformation can be simply computed by elastic analysis. Further more, a practical solution is proposed to consider the contact between the plate and the positioning jig by judging the reaction forces of the jig at calculation step and the effect of the longitudinal curvature is closely considered.

  • PDF