• 제목/요약/키워드: load decomposition

검색결과 135건 처리시간 0.028초

ㄷ자형 개방형 단면부에 의해 보강되 등방성 평판의 음압레벨에 관한 연구

  • 김택현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.214-220
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise levels in aircraft fuselages and ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model for prediction the sound radiated by a vibration plate stiffened by periodically spaced orthogonal symmetric beams subjected to a sinusoidally time varying point load is developed. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Structural damping is included in both plate and beam materials. From this theoretical model, the sound pressure levels on axis in a semi-infinite fluid(water) bounded by the plate with the variation in the loactions of an external using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numerical package.

  • PDF

Study on the response of circular thin plate under low velocity impact

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Alitavoli, Majid
    • Geomechanics and Engineering
    • /
    • 제9권2호
    • /
    • pp.207-218
    • /
    • 2015
  • In this paper, forming of fully clamped circular plate by using low velocity impact system has been investigated. This system consists of liquid shock tube and gravity drop hammer. A series of test on mild steel and aluminum alloy plates has been done. The effect of varying both impact load and the plate material on the deflection are described. This paper also presents a simple model to prediction of mid-point deflection of circular plate by using input-output experimental data. In this way, singular value decomposition (SVD) method is used in conjunction with dimensionless number incorporated in such complex process. The results of obtained model have very good agreement with experimental data and it provides a way of studying and understanding the plastic deformation of impact loads.

동특성 민감도 해석을 이용한 전단형 철골구조물의 다목적 다단계 최적설계 (Multi-Objective and Multi-Level Optimization for Steel Frames Using Sensitivity Analysis of Dynamic Properties)

  • Cho, Hyo-Nam;Chung, Jee-Seung;Min, Dae-Hong;Kim, Hyun-Woo
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.333-342
    • /
    • 1999
  • An improved optimization algorithm for multi-objective and multi-level (MO/ML) optimum design of steel frames is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed method, well known multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also dynamic analysis is executed to evaluate the implicit function of structural strain energy at each iteration step. To save the numerical efforts, an efficient reanalysis technique through sensitivity analysis of dynamic properties is unposed in the paper. The efficiency and robustness of the improved MOML algorithm, compared with a plain MOML algorithm, is successfully demonstrated in the numerical examples.

  • PDF

부하 판별을 위한 Wavelet 변환의 응용에 관한 연구 (A Study on Application of Wavelet Transform to Electrical Load Discriminations)

  • 정종원;김민성;김태홍;이준탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.109-112
    • /
    • 2001
  • Recently, the subject of \"wavelet analysis\" has drawn much attention from both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Statistics and ets. Analogous to Fourier analysis, wavelets is a versatile tool with very rich mathematical content and great potential for applications. Specially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. In this paper, discrimination analyses of acquired electrical current signals for each and mixed loads were tried by using Morlet wavelet transform. Their representative loads were classified as TV, DRY(Dryer), REF(Refrigerate), and FL(Fluorescent Lamp).

  • PDF

부하(負荷) 판별(判別)을 위한 Wavelet 변환(變煥)의 응용에 관한 연구 (A Study on Application of Wavelet Transform to Electrical Load Discriminations)

  • 김태홍;이상수;성상규;이기영;지석준;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3050-3052
    • /
    • 2000
  • Recently. the subject of "wavelet analysis" has drawn much attention from both mathematical and engineering application fields such as Signal Processing, Compression/ Decomposition, Statistics and etc. Analogous to Fourier analysis, wavelets is a versatile tool with very rich mathematical content and great potential for applications. Specially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. In this paper, discrimination analyses of acquired electrical current signals for each and mixed loads were tried by using Morlet wavelet transform. Their representative loads were classified as TV, DRY, REF, and FL.

  • PDF

A method for nonlinear aerostatic stability analysis of long-span suspension bridges under yaw wind

  • Zhang, Wen-Ming;Ge, Yao-Jun;Levitan, Marc L.
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.553-564
    • /
    • 2013
  • By using the nonlinear aerostatic stability theory together with the method of mean wind decomposition, a method for nonlinear aerostatic stability analysis is proposed for long-span suspension bridges under yaw wind. A corresponding program is developed considering static wind load nonlinearity and structural nonlinearity. Taking a suspension bridge with three towers and double main spans as an example, the full range aerostatic instability is analyzed under wind at different attack angles and yaw angles. The results indicate that the lowest critical wind speed of aerostatic instability is gained when the initial yaw angle is greater than $0^{\circ}$, which suggests that perhaps yaw wind poses a disadvantage to the aerostatic stability of a long span suspension bridge. The results also show that the main span in upstream goes into instability first, and the reason for this phenomenon is discussed.

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권6호
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

Pattern mining for large distributed dataset: A parallel approach (PMLDD)

  • Pal, Amrit;Kumar, Manish
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5287-5303
    • /
    • 2018
  • Handling vast amount of data found in large transactional datasets is an obvious challenge for the conventional data mining algorithms. Addressing this challenge, our paper proposes a parallel approach for proper decomposition of mining problem into sub-problems in order to find frequent patterns from these datasets. The proposed, Pattern Mining for Large Distributed Dataset (PMLDD) approach, ensures minimum dependencies as well as minimum communications among sub-problems. It establishes a linear aggregation of the intermediate results so that it can be adapted to large-scale programming models like MapReduce. In this context, an algorithmic structure for MapReduce programming model is presented. PMLDD guarantees an efficient load balancing among the sub-problems by a specific selection criterion. Further, it optimizes the number of required iterations over the dataset for mining frequent patterns as compared to the existing approaches. Finally, we believe that our approach is scalable enough to handle larger datasets in terms of performance evaluation, and the result analysis justifies all these mentioned concerns.

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam

  • Alimoradzadeh, M.;Akbas, S.D.
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.353-363
    • /
    • 2022
  • This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

  • M., Alimoradzadeh;S.D., Akbas
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.485-504
    • /
    • 2022
  • This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.