• 제목/요약/키워드: load combinations

검색결과 205건 처리시간 0.021초

유전 알고리즘을 이용한 탑재 공정과 일정 계획 (Erection Process Planning & Scheduling using Genetic Algorithm)

  • 이재원;김훈주
    • 대한조선학회논문집
    • /
    • 제32권1호
    • /
    • pp.9-16
    • /
    • 1995
  • 탑재 공정 계획은 도크 공기를 만족토록 탑재 전략과 탑재 블록 순서를 결정하는 것이며, 탑재일정 계획은 결정된 탑재 순서에 따라 블록의 탑재일을 결정하는 것이다. 일정 계획에 따라 부하 분포가 다양한 양상을 보이며, 이는 생산 비용에 영향을 미친다. 제한된 가용 자원을 효율적으로 사용하면서 최단 공기에 탑재를 완료할 수 있는 최적의 공정 계획을 수립하기 위해서는 공정 계획과 일정 계획의 다양한 조합에 대해 시뮬레이션해 볼 수 있어야 한다. 최적 탑재 공정 계획 시스템 구축을 위해서는 탑재 순서를 자동으로 생성하는 시스템과 부하 평준화 시스템이 요구된다. 본 논문에서 탑재 순서 자동 생성 방안을 약술하였다. 부하 평준화는 같은 도크 기간에 건조하는 모든 선박에 대해 동시에 행하여야 신뢰성 있는 결과를 얻을 수 있다. 이럴 경우 탐색 범위가 매우 넓어짐으로 효율적인 최적화 기법이 필요하다. 본 연구에서는 유전 알고리즘을 이용한 부하 평준화 시스템을 구현하였다. 본 시스템 개발로 일정 계획이 고려된 다양한 공정 계획 시뮬레이션이 가능하다.

  • PDF

유한요소해석을 이용한 M8 블라인드 리벳 너트 형상 최적 설계 (Design Optimization of M8 Blind Rivet Nut Geometry using Finite Element Analysis)

  • 구본준;최정묵;홍석무
    • 소성∙가공
    • /
    • 제29권3호
    • /
    • pp.157-162
    • /
    • 2020
  • Blind rivet nuts are increasingly used in automotive for the joining of sheets. Their application, however, requires appropriate design guides to prevent catastrophic events arising from the failure of joints. In this study, the shaft shape of a frequently used M8 blind rivet nut is optimized based on 3D numerical analysis of the blind rivet nut considering the characteristics of thread. The thread needs to be modeled to suitably consider the fastening of the M8 bolt after the crimping process. FE analysis showed that while the friction in the contact between crimp flange and plate has no significant effect on the crimp geometry, shaft thickness (t) and shaft height (h) are the most significant design variables. The parameter study including various combinations of t and h reveals that they affect the gap (the distance between the crimped flange and the plate that develops through riveting) and the load acting on the plate. The gap is an indicator of the tightening force. It is found that t is inversely proportional to the gap, and proportional to the load, whereas h is proportional to the gap and inversely proportional to the load. Based on our FE analysis results, we propose the range 0.062 < t/h < 0.1 to ensure sufficient fastening (high clamping load, small gap) of the M8 blind rivet nut. The design guide for determining the t/h ratio proposed in this study can be used for general quantitative analysis of the size and the t/h ratio of blind rivet nuts.

용접부 균열의 균열진전력에 대한 구조물 형상과 균열 위치의 영향 (Effect of Structural Geometry and Crack Location on Crack Driving Forces for Cracks in Welds)

  • 오창균;김종성;진태은;김윤재
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.931-940
    • /
    • 2006
  • Defect assessment of a weld zone is important in fitness-for-service evaluation of plant components. Typically a J and $C^*$ estimation method for a defective homogeneous component is extended to a mismatched component, by incorporating the effect due to the strength mismatch between the weld metal and the base material. The key element is a mismatch limit load. For instance, the R6/R5 procedure employs an equivalent material concept, defined by a mismatch limit load. A premise is that if a proper mismatch limit load solution is available, the same concept can be used for any defect location (either a weld centre defect or a heat affected zone (HAZ) defect) and for any material combination (either two-material or multi-material combinations; either similar or dissimilar joints). However, validation is still limited, and thus a more systematic investigation is needed to generalise the suggestion to any geometry, any defect location and any material combination. This paper describes the effect of structural geometry on the $C^*$ integral for defective similar welds, based on systematic elastic-creep 2-D and 3-D finite element (FE) analyses, to attempt to elucidate the questions given above. It is found that the existing 'equivalent material' concept is valid only for limited cases, although it provides conservative estimates of $C^*$ for most of cases. A modification to the existing equivalent material concept is suggested to improve accuracy.

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

Calculation and field measurement of earth pressure in shield tunnels under the action of composite foundation

  • Chi Zhang;Shi-ju Ma;Yuan-cheng Guo;Ming-yu Li;Babak Safaei
    • Geomechanics and Engineering
    • /
    • 제34권1호
    • /
    • pp.17-27
    • /
    • 2023
  • Taking a subway shield tunnel in a certain section of Zhengzhou Metro Line 5 as an example, the field tests of shield cutting cement-soil monopile composite foundation were carried out. The load and internal force of the tunnel lining under the action of composite foundation were tested on-site and the distribution characteristics and variation laws of earth pressure around the tunnel under the load holding state of the composite foundation were analyzed. Five different load combinations (i.e., overburden load theory + q0, Terzaghi's theory + q0, Bierbaumer's theory + q0, Xie's theory + q0, and the proposed method (the combination of compound weight method and Terzaghi's theory) + q0) were used to calculate the internal force of the tunnel structure and the obtained results were compared with the measured internal force results. The action mode of earth pressure on the tunnel lining structure was evaluated. Research results show that the earth pressure obtained by the calculation method proposed in this paper was more consistent with the measured value and the deviation between the two was within 5%. The distribution of the calculated internal force of the tunnel structure was more in line with the distribution law of field test data and the deviation between the calculated and measured values was small. This effectively verified the rationality and applicability of the proposed calculation method. Research results provided references for the design and evaluation of shield tunnels under the action of composite foundations.

Bearing capacity of shallow footing under combined loading

  • Kusakabe, Osamu;Takeyama, Tomohide
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.3-25
    • /
    • 2010
  • The paper deals with two bearing capacity problems of shallow footing under combined loading. The first is a FEM study of shallow strip footing on two-layer clay deposits subjected to a vertical, horizontal and moment combined loading, while the second is a centrifuge study of shallow rectangular footing on dry sand under double eccentricity. The FEM results revealed that the existence of top soft layer sensitively affects more on horizontal and moment capacity than vertical capacity for cases of footing on soft clay overlying stiff clay. Practical design charts are presented to evaluate bearing capacities of footing for various combinations of the ratio of the depth of the upper layer to the footing width and the ratio of undrained strength of the upper layer to that of the lower. The centrifuge tests indicated that current design practice of calculating failure load of rectangular surface footing under double eccentricity underestimates the centrifuge loading test data. This trend is more marked when the eccentricity becomes larger. The decreasing trend in failure load with an increase of double eccentricity is rather uniquely expressed by a single curve, using a newly defined resultant eccentricity and the diagonal length of the footing base.

  • PDF

P92와 STS 316L강의 고온 피로 균열 성장에 미치는 하중 파형의 영향 (The Effect of Loading Waveform on the High Temperature Fatigue Crack Propagation in P92 and STS 316L Steel)

  • 김수영;임병수
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.136-140
    • /
    • 2002
  • High temperature fatigue crack growth behavior of P92 and STS 316L steel were investigated under four load conditions using CT type specimens. Loading and unloading times for the low wave forms were combinations of 1 sec. and 50 sec., which were two symmetric wave forms and two unsymmetric wave forms. Their behaviors are characterized using ΔK parameter. In STS 316L, Crack growth rate generally increases as frequency decreases. However, sensitivity of the loading rate to crack growth rate was fecund to be far greater than that of the unloading time. It is because as loading time increases, creep occurs at crack tip causing the crack growth rate to increase. However creep does not occur at the crack tip even if the unloading time is increased. In P92 steel, crack growth rate showed same behavior as in STS 316L. But the increase in loading or unloading time made almost no difference in crack growth rate, suggesting that no significant creep occurs in P92 steel even though loading time increases. After conducting high temperature tensile tests and comparing high temperature fatigue crack growth rates under various wave forms, it was proved that P92 steel has not only good high temperature properties but also improved, better high temperature fatigue properties than STS 316L.

쌍끌이 중층트롤어업의 연구 ( III ) - 끌줄의 예망장력에 관하여 - ( A Study on the Midwater Pair Trawling ( III ) ) (A Study on the Midwater pair Trawling-III)

  • 장충식;이병기
    • 수산해양기술연구
    • /
    • 제32권1호
    • /
    • pp.1-6
    • /
    • 1996
  • Towing tension of the model nets were determined by the load cell(O~20kg, 20DBBP) in front of W$T_mA$ = 1.57 . $V^1.86$ (unit: kg, mlsec) $T_mB$= 1.58 . $V^1.90$ 2. The towing tension of the full scale net was almost coincided with the results obtained by the model experiment. The towing tension(T) can be expressed as a function of the towing veJocity(V) as T=479$V^1.75$(unit: kg, k't)

  • PDF

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.