• Title/Summary/Keyword: load adaptive

Search Result 663, Processing Time 0.026 seconds

Reliability-Based Iterative Proportionality-logic Decoding of LDPC Codes with Adaptive Decision

  • Sun, Youming;Chen, Haiqiang;Li, Xiangcheng;Luo, Lingshan;Qin, Tuanfa
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • In this paper, we present a reliability-based iterative proportionality-logic decoding algorithm for two classes of structured low-density parity-check (LDPC) codes. The main contributions of this paper include: 1) Syndrome messages instead of extrinsic messages are processed and exchanged between variable nodes and check nodes, which can reduce the decoding complexity; 2) a more flexible decision mechanism is developed in which the decision threshold can be self-adjusted during the iterative process. Such decision mechanism is particularly effective for decoding the majority-logic decodable codes; 3) only part of the variable nodes satisfying the pre-designed criterion are involved for the presented algorithm, which is in the proportionality-logic sense and can further reduce the computational complexity. Simulation results show that, when combined with factor correction techniques and appropriate proportionality parameter, the presented algorithm performs well and can achieve fast decoding convergence rate while maintaining relative low decoding complexity, especially for small quantized levels (3-4 bits). The presented algorithm provides a candidate for those application scenarios where the memory load and the energy consumption are extremely constrained.

Adoptive Feedback Linearization Control of Three-Phase AC/DC Voltage-Source Converter (적응 궤환 선형화를 이용한 3상 AC/DC 전압원 컨버터 제어)

  • Park, Young-Hwan;Park, Jang-Hyun;Kang, Moon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.62-68
    • /
    • 2006
  • In this paper, an adaptive input-output linearization and zero dynamics control of three phase AC/DC converter are proposed. For achieving output do voltage regulation with unity power factor, the q-axis current of the rotating d-q frame is regulated to zero and the output do voltage is controlled to track a given reference voltage $V_r$. The proposed scheme is robust to the parametric uncertainty md load current of the converter due to the adaptation process. The simulation results are presented to illustrate the performance and feasibility of the proposed control scheme.

A Novel Control Scheme for T-Type Three-Level SSG Converters Using Adaptive PR Controller with a Variable Frequency Resonant PLL

  • Lin, Zhenjun;Huang, Shenghua;Wan, Shanming
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1176-1189
    • /
    • 2016
  • In this paper, a novel quasi-direct power control (Q-DPC) scheme based on a resonant frequency adaptive proportional-resonant (PR) current controller with a variable frequency resonant phase locked loop (RPLL) is proposed, which can achieve a fast power response with a unity power factor. It can also adapt to variations of the generator frequency in T-type Three-level shaft synchronous generator (SSG) converters. The PR controller under the static α-β frame is designed to track ac signals and to avert the strong cross coupling under the rotating d-q frame. The fundamental frequency can be precisely acquired by a RPLL from the generator terminal voltage which is distorted by harmonics. Thus, the resonant frequency of the PR controller can be confirmed exactly with optimized performance. Based on an instantaneous power balance, the load power feed-forward is added to the power command to improve the anti-disturbance performance of the dc-link. Simulations based on MATLAB/Simulink and experimental results obtained from a 75kW prototype validate the correctness and effectiveness of the proposed control scheme.

An Adaptive I/Q Diversity Combining Method for UHF RFID Reader Systems (UHF 대역 RFID 리더 시스템을 위한 적응형 I/Q 다이버시티 결합 알고리즘)

  • Yoon, Chang-Seok;Nam, Sung-Sik;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.176-182
    • /
    • 2010
  • In this paper, we propose an adaptive I/Q diversity combining scheme which reduces unnecessary computations while maintaining the required performance level. The system with the proposed scheme adaptively applies a proper combining scheme among the conventional selective scheme and combining scheme based on the comparison result between the estimated instantaneous SNR and the pre-determined threshold. As a result, the system with our proposed scheme can reduce the computational load while maintaining the required performance level. Some selected simulation results show that the system with the proposed scheme can decrease the unnecessary computations compared with the system with the conventional schemes while maintaining the required performance level.

Design of a Hybrid Controller to Eliminate the Force Ripple in the Linear Motor (선형 모터에서 힘리플 제거를 위한 Hybrid 제어기의 설계)

  • Kim, Kyong-Chon;Kim, Jung-Jae;Choi, Young-Man;Gweon, Dae-Gab
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • The proposed hybrid controller consists of PID controller, feedforward controller and RLSE (Recursive Least Square Estimating) adaptive controller to compensate the force ripple that is periodic function of position in a linear motor. The modeling of force ripple is divided into the current-dependent and current-independent components. The current independent components never change as the current into the linear motor changes. On the other hand, the current-dependent components change as current varies when the velocity and load of the linear motor change. The proposed controller can compensate both force ripples. The feedforward controller compensates the current-independent components and the RLSE adaptive controller compensates the current-dependents components. We verified the performance of the controller by simulation and experiments.

  • PDF

Maintenance Priority Index of Overhead Transmission Lines for Reliability Centered Approach

  • Heo, Jae-Haeng;Kim, Mun-Kyeom;Kim, Dam;Lyu, Jae-Kun;Kang, Yong-Cheol;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1248-1257
    • /
    • 2014
  • Overhead transmission lines are crucial components in power transmission systems. Well-designed maintenance strategy for overhead lines is required for power utilities to minimize operating costs, while improving the reliability of the power system. This paper presents a maintenance priority index (MPI) of overhead lines for a reliability centered approach. Proposed maintenance strategy is composed of a state index and importance indices, taking into account a transmission condition and importance in system reliability, respectively. The state index is used to determine the condition of overhead lines. On the other hand, the proposed importance indices indicate their criticality analysis in transmission system, by using a load effect index (LEI) and failure effect index (FEI). The proposed maintenance method using the MPI has been tested on an IEEE 9-bus system, and a numerical result demonstrates that our strategy is more cost effective than traditional maintenance strategies.

Design of Adaptive Controller using Switching Mode with Fuzzy inference and its application for industry Automation Facility (퍼지추론의 스위칭 특성을 이용한 적응제어기 설계 및 산업용 자동화 설비에의 응용)

  • 이형찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.60-68
    • /
    • 1999
  • This paper deals with the tracking control problem of industrial robotic manipulators with unknown or changing dynamics. The proposed method makes use of multiple moodels and switching mechanism by fuzzy inference of the manipulator in an indirect adaptive controller architecture. The models used for the indmtification of the manipliator are identical, except for the initial estimates of the unknown inertial pararmeters of the manipulator and its load. The torque input that is applied to the joint actuators is determined at every instant by the identification model that best approximates the robot dynamics. Simulation results are also included to dermnstrate the improvement in the tracking perfermance when the proposed method is used.s used.

  • PDF

Research on Performance Improvement of the Adaptive Active Noise Control System Using the Recurrent Neural Network (순환형 신경망을 이용한 적응형 능동소음제어시스템의 성능 향상에 대한 연구)

  • Han, Song-Ik;Lee, Tae-Oh;Yeo, Dae-Yeon;Lee, Kwon-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1759-1766
    • /
    • 2010
  • The performance of noise attenuation of the adaptive active noise control algorithm is improved using the recurrent neural network. The FXLMS that has been frequently used in the active noise control is simple and has low computational load, but this method is weak to nonlinearity of the main or secondary path since it is based on the FIR linear filter method. In this paper, the recurrent neural network filter has been developed and applied to improvement of the active noise attenuation by simulation.

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.

New Backstepping-DSOGI hybrid control applied to a Smart-Grid Photovoltaic System

  • Nebili, Salim;Benabdallah, Ibrahim;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • In order to overcome the power fluctuation issues in photovoltaic (PV) smart grid-connected systems and the inverter nonlinearity model problem, an adaptive backstepping command-filter and a double second order generalized Integrators (DSOGI) controller are designed in order to tune the AC current and the DC-link voltage from the DC side. Firstly, we propose to present the filter mathematical model throughout the PV system, at that juncture the backstepping control law is applied in order to control it, Moreover the command filter is bounded to the controller aiming to exclude the backstepping controller differential increase. Additionally, The adaptive law uses Lyapunov stability criterion. Its task is to estimate the uncertain parameters in the smart grid-connected inverter. A DSOGI is added to stabilize the grid currents and eliminate undesirable harmonics meanwhile feeding maximum power generated from PV to the point of common coupling (PCC). Then, guaranteeing a dynamic effective response even under very unbalanced loads and/or intermittent climate changes. Finally, the simulation results will be established using MATLAB/SIMULINK proving that the presented approach can control surely the smart grid-connected system.