• Title/Summary/Keyword: load adaptive

Search Result 663, Processing Time 0.027 seconds

Developed Ability of Zero-phase Overcurrent Relay by Changed setting point value (설정치 변경에 의한 영상과전류계전기의 성능개선)

  • Kim, N.H.;Yoon, D.S.;Chang, S.I.;Choi, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.220-222
    • /
    • 1998
  • This paper presents a method, which develops an ability of Zero-phase Overcurrent Relay. Zero-phase current is very useful factor of Fault decision in Protect Relaying system. Actually, the setting-point value of Designed Relay, using Zero-phase current, is fixed. So in the case of deciding fault, Fixed setting-point value is not suitable for changing Load. and cause errors in Distributions system. For solving this problem, This paper proposes the Changed setting point value Algorithm, which can be adaptive for changing Distributions system using Zero-phase current r.m.s. indexes. The results of simulation under Load changing and High impedance fault show that proposed algorithm is useful for changing Distributions system and decreasing errors.

  • PDF

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.

Load Balancing for Distributed Processing of Real-time Spatial Big Data Stream (실시간 공간 빅데이터 스트림 분산 처리를 위한 부하 균형화 방법)

  • Yoon, Susik;Lee, Jae-Gil
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1209-1218
    • /
    • 2017
  • A variety of sensors is widely used these days, and it has become much easier to acquire spatial big data streams from various sources. Since spatial data streams have inherently skewed and dynamically changing distributions, the system must effectively distribute the load among workers. Previous studies to solve this load imbalance problem are not directly applicable to processing spatial data. In this research, we propose Adaptive Spatial Key Grouping (ASKG). The main idea of ASKG is, by utilizing the previous distribution of the data streams, to adaptively suggest a new grouping scheme that evenly distributes the future load among workers. We evaluate the validity of the proposed algorithm in various environments, by conducting an experiment with real datasets while varying the number of workers, input rate, and processing overhead. Compared to two other alternative algorithms, ASKG improves the system performance in terms of load imbalance, throughput, and latency.

Load Balancing Scheme in Heterogeneous Multiple AS Environment based on IMS Network (IMS 네트워크 기반 이종 다중 AS 환경에서의 부하 분산 기법)

  • Yoo, Yung-Jun;Cho, Yoon-Sang;Song, Min-Do;Kim, Moo-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.250-258
    • /
    • 2011
  • In this paper we propose a load balancing scheme for heterogeneous multiple AS's (Application Server) in IMS (IP Multimedia Subsystem) based network. In IMS network, to perform load balancing among multiple ASs with different registration pattern, different weight value should be set for each AS. In previous systems, there exists an inconvenience that the weight value should be set manually by the operator after monitoring the result. In this paper we propose a method to calculate optimal weight in automatic manner and to perform load balancing simultaneously. We also propose a simplified algorithm to reduce calculation in specific situation and present a way to apply our proposed scheme in adaptive manner according to the situation. Through simulation result, we verify that our proposing scheme outperforms previous schemes in load balancing and adjusts well to the change of the system in automatic manner with fast convergence.

A Speed Control of BLDC Motor using Adaptive Back stepping Technique (BLDC motor의 적응백스텝핑 속도제어)

  • Jeon, Yong-Ho;Cho, Min-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.8
    • /
    • pp.899-905
    • /
    • 2014
  • In this paper, we propose a method that can be used to back-stepping controller design for speed control of Brushless Direct Current (BLDC) motor. First, back-stepping controller is designed with load torque estimator. The estimator is included to adapt to the variation of load torque in real time. Finally, the proposed controller is tested through experiment with a 120W BLDC motor for the angular velocity reference tracking performance and load torque volatility estimation. The simulation result verifies the performance of the proposed controller.

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

Differential Choice of Radar Beam Scheduling Algorithm According to Radar Load Status (레이더의 부하 상태에 따른 빔 스케줄링 알고리즘의 선택적 적용)

  • Roh, Ji-Eun;Kim, Dong-Hwan;Kim, Seon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.322-333
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability. For this reason, Radar Resource Management(RRM) becomes new challenging issue. RRM is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed a rule-based scheduling algorithm and Simulated Annealing(SA) based scheduling algorithm, which are alternatively selected and applied to beam scheduler according radar load status in real-time. The performance of the proposed algorithm was evaluated on the multi-function radar scenario. As a result, we showed that our proposed algorithm can process a lot of beams at the right time with real time capability, compared with applying only rule-based scheduling algorithm. Additionally, we showed that the proposed algorithm can save scheduling time remarkably, compared with applying only SA-based scheduling algorithm.

Optimal Location and Sizing of Shunt Capacitors in Distribution Systems by Considering Different Load Scenarios

  • Dideban, Mohammadhosein;Ghadimi, Noradin;Ahmadi, Mohammad Bagher;Karimi, Mohammmad
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1012-1020
    • /
    • 2013
  • In this work, Self-adaptive Differential Evolutionary (SaDE) algorithm is proposed to solve Optimal Location and Size of Capacitor (OLSC) problem in radial distribution networks. To obtain the SaDE algorithm, two improvements have been applied on control parameters of mutation and crossover operators. To expand the study, three load conditions have been considered, i.e., constant, varying and effective loads. Objective function is introduced for the load conditions. The annual cost is fitness of problem, in addition to this cost, CPU time, voltage profile, active power loss and total installed capacitor banks and their related costs have been used for comparisons. To confirm the ability of each improvements of SaDE, the improvements are studied both in separate and simultaneous conditions. To verify the effectiveness of the proposed algorithm, it is tested on IEEE 10-bus and 34-bus radial distribution networks and compared with other approaches.

Receiver-driven Cooperation-based Concurrent Multipath Transfer over Heterogeneous Wireless Networks

  • Cao, Yuanlong;Liu, Qinghua;Zuo, Yi;Huang, Minghe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2354-2370
    • /
    • 2015
  • The advantages of employing SCTP-based Concurrent Multipath Transfer (CMT) have been demonstrated to be very useful for data delivery over multi-homed wireless networks. However, there is still significant ongoing work addressing some remaining limitations and challenges. The most important concern when applying CMT to data delivery is related to handling packet reordering and buffer blocking. Another concern on this topic is that current sender-based CMT solutions seldom consider balancing the overhead and sharing the load between the sender and receiver. This paper proposes a novel Receiver-driven Cooperation-based Concurrent Multipath Transfer solution (CMT-Rev) with the following aims: (i) to balance overhead and share load between the sender and receiver, by moving some functions including congestion and flow control from the sender onto receiver; (ii) to mitigate the data reordering and buffer blocking problems, by using an adaptive receiver-cooperative path aggregation model, (iii) to adaptively transmit packets over multiple paths according to their receiver-inspired sending rate values, by employing a new receiver-aware data distribution scheduler. Simulation results show that CMT-Rev outperforms the existing CMT solutions in terms of data delivery performance.

FVF-Based Low-Dropout Voltage Regulator with Fast Charging/Discharging Paths for Fast Line and Load Regulation

  • Hinojo, Jose Maria;Lujan-Martinez, Clara;Torralba, Antonio;Ramirez-Angulo, Jaime
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.373-382
    • /
    • 2017
  • A new internally compensated low drop-out voltage regulator based on the cascoded flipped voltage follower is presented in this paper. Adaptive biasing current and fast charging/discharging paths have been added to rapidly charge and discharge the parasitic capacitance of the pass transistor gate, thus improving the transient response. The proposed regulator was designed with standard 65-nm CMOS technology. Measurements show load and line regulations of $433.80{\mu}V/mA$ and 5.61 mV/V, respectively. Furthermore, the output voltage spikes are kept under 76 mV for 0.1 mA to 100 mA load variations and 0.9 V to 1.2 V line variations with rise and fall times of $1{\mu}s$. The total current consumption is $17.88{\mu}V/mA$ (for a 0.9 V supply voltage).