• Title/Summary/Keyword: livestock manure compost

검색결과 142건 처리시간 0.028초

Volatile Fatty Acids Production During Anaerobic and Aerobic Animal Manure Bio-treatment

  • Hong, J.H.
    • 한국축산시설환경학회지
    • /
    • 제13권3호
    • /
    • pp.219-232
    • /
    • 2007
  • Odors from manures are a major problem for livestock production. The most significant odorous compounds in animal manure a.e volatile fatty acids(VFAs). This work reviews the VFAs from the anaerobic sequencing biofilm batch reactor(ASBBR), anaerobic sequencing batch reactor(ASBR), solid compost batch reactor(SCBR), and aerobic sequencing batch reactor(SBR) associated with the animal manure biological treatment. First, we describe and quantify VFAs from animal manure biological treatment and discuss biofiltration for odor control. Then we review certain fundamentals aspects about Anaerobic and aerobic SBR, composting of animal manure, manure compost biofilter for odorous VFAs control, SBR for nitrogen removal, and ASBR for animal wastewater treatment systems considered important for the resource recovery and air quality. Finally, we present an overview for the future needs and current experience of the biological systems engineering for animal manure management and odor control.

  • PDF

가축분뇨 자원화 처리시 수질오염물질 삭감율 산정 연구 (A Study on the Estimation of Water Pollutants Reduction Ratio in Livestock Manure Fertilization)

  • 어성욱
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.722-727
    • /
    • 2017
  • Livestock manure is known to be the main cause of non-point pollution in agricultural areas. The pollutant reduction ratio of livestock manure recycling to fertilizers was measured in order to analyze the effect on the water quality of the Total Maximum Daily Load (TMDL) system in Korea. The reduction ratio has been applied by theoretical consideration without a survey, and there is no value for Total Organic Carbon (TOC) newly introducing any organic items. The reduction ratio of each pollutant from this study was revealed as follows: TOC, BOD, T-N and T-P were 0.34, 0.60, 0.37, and 0.42 for individual farm and 0.38, 0.61, 0.45 and 0.44 for entrustment facilities, respectively. The reduction ratio of individual farm was surveyed as TOC 0.63, BOD 0.62, T-N 0.42 and T-P 0.32 for liquid fertilizer, and TOC 0.30, BOD 0.64, T-N 0.40 and T-P 0.48 for compost. The total reduction ratio was derived by multiplying the ratio for liquid fertilizer and compost by the respective load. Compared to the pollutant reduction ratio of the individual farm with entrustment facilities marking the higher in liquid fertilizer and the lower in compost. Through this study, we found the difference of pollutant reduction ratio between a livestock manure recycling process and facilities. Although phosphorus is known as a preservative matter, the treatment efficiency of T-P is analyzed to decrease by chemical precipitation.

화학비료, 가축분뇨 및 퇴비의 질소동위원소비 (Nitrogen Isotope Compositions of Synthetic Fertilizer, Raw Livestock Manure Slurry, and Composted Livestock Manure)

  • 임상선;이상모;이승헌;최우정
    • 한국토양비료학회지
    • /
    • 제43권4호
    • /
    • pp.453-457
    • /
    • 2010
  • 화학비료, 가축분뇨 및 퇴비 등 주요 질소원의 질소동위원소비 (${\delta}^{15}N$) 차이를 조사하기 위해 각각 8, 4, 37점의 시료를 채취하여 ${\delta}^{15}N$을 분석하였다. 평균 ${\delta}^{15}N$ 값은 화학비료가 $-1.5{\pm}0.5$‰ (범위: -3.9~+0.5‰‰), 가축분뇨가 $+6.3{\pm}0.4$‰ (+5.3~+7.2‰), 가축분퇴비가 $+16.0{\pm}0.4$‰ (+9.3~+20.9‰)였다. 화학비료가 타 질소원에 비해 ${\delta}^{15}N$ 값이 낮은 것은 화학비료 제조시 이용하는 질소원인 대기 $N_2$${\delta}^{15}N$ 값 (0‰)을 반영하기 때문이다. 반면, 가축분에 비해 퇴비의 ${\delta}^{15}N$ 값이 높은 것은 퇴비화 과정 중 일어나는 질소손실 (특히, 암모니아 휘산)과 관련된 질소동위원소분할효과 ($^{14}N$의 손실속도>$^{15}N$의 손실속도)에 의한 퇴비 중 $^{15}N$ 농축에 의한 결과로 판단된다. 따라서, 본 연구는 ${\delta}^{15}N$ 분석을 통해 현재 우리나라 농업 시스템에서 가장 널리 이용되고 있는 두 가지 질소원 (화학비료와 퇴비)을 구분할 수 있음을 보여준다.

The Properties of Livestock Waste Composts Tea Depending on Manufacturing Method and Their Effect on Chinese Cabbage Cultivation

  • Jang, Jae-Eun;Kang, Chang-Sung;Park, Jung-Soo;Kim, Sun-Jae;Kim, Hee-Dong
    • 한국토양비료학회지
    • /
    • 제48권1호
    • /
    • pp.8-14
    • /
    • 2015
  • Livestock waste compost tea is a liquid extract of compost obtained by mixing livestock compost. In this study, some chemical and microbiological characteristics of compost tea depending on the kind of raw materials used were examined, and several experiments to investigate the practical effects on Chinese cabbage cultivation were conducted. This experiment showed that livestock composts needed to be added into aerated water at the ratio between 1:100 and 1:10 (1 part compost to 10~100 parts water) to produce the high quality compost tea. Compost teas must be aerated more than 24 to 48 hours to be able to support aerobic organisms. In cultivation test with compost teas, swine manure compost teas were made by the extracting ratio of 50x, in the aerated condition for 24 hours in water and oil cake in the extracting ratio of 100x were added as supplements. Following the input of oil cake, the concentration of nitrogen and aerobic bacteria increased. Another experiment was conducted to determine the effect of different swine manure compost teas on plant growth and yield of Chinese cabbage. The fresh yield of Chinese cabbage was higher in the fertigated plots by compost tea with oil cake compared to those of N, $P_2O_5$, $K_2O$ fertilization plot with chemical fertilizer by soil test recommendation (Fert. NPK). The effect of compost tea on growth of Chinese cabbage was largely attributable to the increased number of microorganisms as well as nutrients.

축분 퇴비의 이화학적 특성과 발아지수를 이용한 부숙도 평가 (Evaluation of Compost Maturity by Physico-chemical Properties and Germination Index of Livestock Manure Compost)

  • 장기운;홍주화;이종진;한기필;김남천
    • 한국토양비료학회지
    • /
    • 제41권2호
    • /
    • pp.137-142
    • /
    • 2008
  • This study was conducted to evaluate the humification grade of compost, based on physico-chemical property and phyto-toxicity during the composting with three kinds of livestock manures and saw dust. The ratios of the compost, which was mixed with pig manure(P) and sawdust(S) were 4 : 6(PS-1), 5 : 5(PS-2) and 6 : 4(PS-3); poultry manure(PO) and sawdust(S) were 4 : 6(POS-1), 5 : 5(POS-2) and 6 : 4(POS-3); cow manure(C) and sawdust(S) were 4 : 6(CS-1), 5 : 5(CS-2) and 6 : 4(CS-3) by volume to volume, and they were decomposed for 60 days. In the result, the temperature in all treatments during composting rapidly increased above $65.4^{\circ}C$, and then gradually decreased to around $40^{\circ}C$. At 60 day, after the treatment, pH 5.9 ~ 8.0 at the incipient stage increased to 7.6 ~ 8.5, and the C/N ratio was 13.8 ~ 21.1 at the final composting stage. Germination Index(G.I.) showed in the range of 75.1 ~ 94.6 in all treatments at day 60. Therefore, it is likely recommended to take the best humification grade when the temperature maintains above $65^{\circ}C$ longer than a day at minimum, in the range of pH 6.5 ~ 8.5 for the final compost, under 20 of C/N ratio, and G.I. above 80. The level of G.I. above 80 should be the mature compost which could be used in the field without gas demage to crops.

가축분퇴비가 연용된 밭 토양에서 잠재적 질소 무기화량 추정 (Soil Nitrogen Mineralization Influenced by Continuous Application of Livestock Manure Composts)

  • 윤홍배;이연;유창연;양재의;이상민;신재훈;김석철;이용복
    • 한국토양비료학회지
    • /
    • 제43권3호
    • /
    • pp.329-334
    • /
    • 2010
  • 가축분 퇴비 시용이 토양 중 질소 무기화 특성에 미치는 영향을 구명하기 위해 계분 (CHM), 돈분 (PIM), 우분 (COM), 계분톱밥 (CHMS), 돈분톱밥 (PIMS), 및 우분톱밥 (COMS) 퇴비를 4년간 연용한 밭 토양을 대상으로 27주간 항온시험을 실시하였다. 항온기간 동안 누적 질소 무기화량을 1차 반응 속도식 (first-order kinetics)에 적용하여 잠재적 질소무기화량 (No)을 평가한 결과, PIM 처리구에서 15.0 mg 100 $g^{-1}$으로 가장 높았으며, COMS 처리구에서 9.5 mg 100 $g^{-1}$로 가장 낮았다. 그리고 질소 무기화 속도상수, k는 CHM 0.017 > PIMS 0.016 ${\geq}$ CHMS 0.016 > PIM 0.014 > COM 0.012 ${\geq}$ COMS 0.012 순으로 나타났다. 특히, No 값은 토양 중 전질소 함량이 증가함에 따라 증가하는 경향을 보였고, 이는 토양 중 전질소 함량의 8.1-11.9% 이었다. 그리고 No 값은 토양 유기물 함량과는 음의 상관관계를 보였다. 따라서 톱밥이 혼용된 가축분 퇴비가 장기 연용된 토양에서 유기물 함량을 근거로 산출하는 현재의 질소 시비량 결정 방법은 개선이 필요하다고 판단된다.

축사와 퇴비 시설 취기제어를 위한 생물학적 탈취 기술의 적용 (Biofiltration Technology Application for Livestock and Compost Facility Odor Control)

  • 홍지형
    • 한국축산시설환경학회지
    • /
    • 제6권3호
    • /
    • pp.153-160
    • /
    • 2000
  • Odor control for livestock and compost facilities has focused on manure handling and treatment during storage and land application, however, large amount of malodorous air is emitted and it is one of main sources of malodour in livestock farming. Biological treatment or biodegradation involves converting an organic contaminant to carbon dioxide and water using natural bacteria. Biofiltration is an effective air pollution control technology that uses microorganisms to breakdown gaseous contaminants and produce innocuous end products. Investment and operating costs on the biofiltration are lower than for thermal and chemical oxidation processes. This paper is intended to provide an overview of basic design and operating criteria for biofilters to control odors from livestock and compost facilities.

  • PDF

Analysis of the Structure of the Bacterial Community in the Livestock Manure-based Composting Process

  • Sasaki, Hiraku;Nonaka, Jun;Otawa, Kenichi;Kitazume, Osamu;Asano, Ryoki;Sasaki, Takako;Nakai, Yutaka
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권1호
    • /
    • pp.113-118
    • /
    • 2009
  • We investigated the structure of bacterial communities present in livestock manure-based composting processes and evaluated the bacterial succession during the composting processes. Compost samples were derived separately from swine manure, dairy manure and sewage sludge. The structure of the bacterial community was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) using universal eubacterial primers. The genus Bacillus and related genera were mainly detected following the thermophilic composting phase of swine and dairy manure composts, and the members of the phylum Bacteroidetes were mainly detected in the cattle manure waste-based and sewage sludge compost. We recovered and sequenced limited number of the bands; however, the PCR-DGGE analysis showed that predominant diversities during the composting processes were markedly changed. Although PCR-DGGE analysis revealed the presence of different phyla in the early stages of composting, the members of the phylum Firmicutes and Bacteroidetes were observed to be one of the predominant phyla after the thermophilic phase.

축산분뇨 농지환원을 위한 적정관리방안 (Development of Guidelines for Animal Waste Land Application to Minimize Water Quality Impacts)

  • 홍성구
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.136-146
    • /
    • 2002
  • Land application of manure compost is considered one of the widely-used animal waste management practices. Many livestock farms adopt composting for their animal waste disposal and apply the compost to crop fields. While standard rates have been established based on researches with respect to land application of manure compost recently, there have been few discussions on water quality impact of the application. Water quality impact should be taken into account in land applications of manure compost. In this study, management practices were proposed based on the investigation of water quality of leachate from manure compost under rainfall simulation, field studies, and monitoring runoff water quality from farm fields after land application of animal waste. The concentrations of major water quality parameters of the leachate were significantly high, whereas those of runoff from soils after tillage for soil incorporation, were not affected by the application based on a series of experiments. Runoff water from farm fields after land application also showed high concentrations of pollutants. Appropriate management practices should be employed to minimize pollutant loading from manure applied fields. Proposed major management practices include 1) application of recommended amounts, 2) proper tillage for complete soil and manure incorporation, 3) field management to prevent excessive soil erosion, 4) complete diversion of inflow into the field from outside, 5) implementation of vegetative buffer strips near boundaries, and 6) prevention of direct discharge of runoff water front fields Into streams.

가축분뇨 퇴비가 시비된 밭 표면유출수의 총질소와 총인의 유출 특성 (Runoff Characteristics of Total-N and Total-P in Upland Surface Runoff Treated with Livestock Manure Compost)

  • 최진규;손재권;이현정;김영주
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.29-37
    • /
    • 2012
  • This study was carried out to runoff characteristics in an upland livestock manure compost. Irrigation, runoff and water quality data in the upland were analyzed periodically from May to November in 2011. The observed amount of rainfall, irrigation, runoff for the experimental upland during the investigation period were 1,299.7 mm, 32.0 mm, and 340.7 mm, respectively. The concentrations of T-N in compost and non-compost upland during study period were ranged from 2.09 mg/L to 6.66 mg/L and from 1.99 mg/L to 6.01 mg/L, respectively. which was generally higher than the quality standard of agricultural water (1.0 mg/L). The concentrations of T-P in compost and non-compost upland during study period were ranged from 0.069 mg/L to 0.525 mg/L and from 0.018 mg/L to 0.152 mg/L, respectively. The runoff pollutants loadings of T-N and T-P in compost upland were 10.05 kg/ha and 0.56 kg/ha, respectively. The runoff pollutants loadings of T-N and T-P in non-compost upland were 9.09 kg/ha and 0.26 kg/ha, respectively. The runoff pollutants loadings in T-N and T-P from this study were much lower values than the pollutant loadings of T-N and T-P from the upland published by the others studies. Runoff pollution loadings due to the upland field in order to identify the characteristics of various crops, farming methods and a variety of targets taking into account regional characteristics by conducting continuous monitoring runoff load estimate will be required.