• Title/Summary/Keyword: litter bag

Search Result 17, Processing Time 0.02 seconds

Leaf Litter Processing and Patterns of Shredder Distribution in Headwater Steams in Southeastern Korea (한국 남동지역 상류 하천에서의 낙엽 분해기작과 shredder 분포 유형)

  • Kim Hyun-woo;Gea-Jae Joo;Jong-hoon Choi
    • The Korean Journal of Ecology
    • /
    • v.19 no.6
    • /
    • pp.529-541
    • /
    • 1996
  • During the period of December 1992 (winter-spring) and from February 1995 (winter-spring), the leaf processing rates of oak (Quercus serrata) and tulip (Liriodendron tulipifera) tree was investigated in the headwater streams in southeastern part of Korea in conjunction with the distribution pattern of macroinvertebrate fauna. Using two types of bags ($10\times30cm$ with 5 g of dry leaves; open bag with holes, closed bag without holes), decomposition rates of oak and tulip tree by shredder and/or microbiota at a reatively undisturbed 2nd-order stream were compared, Regardless of leaf type, leaves in the open bage decomposed slightly faster than those in the closed bags. In the 1992 experiment, osk leaves decomposed much slower than tulip leaves (after 138 degree days, osk : closed, 0.006% loss/day ; open, 0.008 ; tulip: closed, 0.021 ; open, 0.023; n=2). The of the first experiment using oak leaves in 1995 were similar to those of the first experiment (after 151 degree days, oak: closed, 0.005% loss / day; open, 0.006; n=6). Over 50% of invertebrates from 122 leaf pack samples collected from 12 streams during the winter period of 1994 were identified as shredders (shredder, 56.2; collector, 32.7; scraper, 8.65; predator, 2.45%). Among shredders, Gammarus sp. and Tipula sp. were dominant species in terms of number and biomass (8.2 ind./g, 1.0 ind./g AFDW of leaves). Among many physico-chemical parameters, the width of stream channel was found to be the most influential factor in the distribution of Gammarus and Tipula (Gammarus: r=-0.34, P<0.001;Tipula:r=0.40, P<0.001). Considering the fact that oak is one the dominant riparian vegetation in the southeastern part of korea, the patterns of oak processing and shredder distribution shown in theis study may well represent some of the important characteristics of headwater steams in southeastern Korea.

  • PDF

Decomposition of Leaf Litter Containing Heavy Metals in the Andong Serpentine Area, Korea (안동 사문암지대의 중금속 함유 낙엽의 분해)

  • Ryou, Sae-Han;Kim, Jeong-Myung;Cha, Sang-Seub;Shim, Jae-Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.4
    • /
    • pp.426-435
    • /
    • 2010
  • The present study attempts to compare the soil chemical characteristics and biological activities (i.e. microbial biomass and soil enzyme activities), and litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens) collected from serpentine and non-serpentine sites by litter bag techniques at serpentine and non-serpentine field experiment sites over a 9-month period. The serpentine soil showed higher pH and soil alkaliphosphatase activity, and lower soil dehydrogenase and urease activities than the non-serpentine soil. Microbial biomass-N at the serpentine soil was larger than the non-serpentine soil, although the microbial biomass-C and microbial biomass-N represented no significant difference between serpentine and non-serpentine soil. These results suggest that the larger microbial biomass-N caused the lower C/N in serpentine soil. At the end of the experiment, the litter samples of A. hirta and M. sinensis collected from serpentine soil revealed a 39.8% and 38.5% mass loss, and the litter sample from non-serpentine soil also showed a 41.1% and 41.7% mass loss at the serpentine site. On the other hand, at the non-serpentine site, 42.2%, 37.4%, and 46.8%, 44.8% were respectively shown. These results demonstrate that the litter decomposition rate is more intensely affected by the heavy metal content of leaf litter than soil contamination. Moreover, the litter collected from the serpentine soil had a lower C/N, whereas the litter decomposition rate was slower than the litter from the non-serpentine soil, because the heavy metal inhibition activities on the litter decomposition process were more conspicuous than the effect of litter qualities such as C/N ratio or lignin/N. The nutrient element content in the decomposing litter was gradually leached out, but heavy metals and Mg were accumulated in the decaying litter. This phenomenon was conspicuous at the serpentine site during the process of decomposition.

Soil Microarthropod Community in the Process of Needle Leaf Decomposition in Korean Pine(Pinus koraiensis) Forest of Namsan and Kwangreung (남산과 광릉수목원의 잣나무림에서 낙엽분해과정에 관련된 토양미소절지동물군집)

  • Bae, Yoon-Hwan;Lee, Joon-Ho
    • The Korean Journal of Soil Zoology
    • /
    • v.4 no.2
    • /
    • pp.75-80
    • /
    • 1999
  • Two years-study with litter bag (mesh size : 0.4 mm, 1.7 m) was carried out from Nov., 1996 to Sept., 1998 to investigate the soil microarthropod community in the process of needle leaf secomposition of Korean pine (Pinus koraiensis) forest in Namsan and Kwangreung, where were supposed to be under different environmental selective pressures. Soil arthropoda collected from litter bags were sorted into suborders or higher taxa. Acari and Collembola were dominant groups, which were 61-68% and 27-35% of total soil arthropod in their numbers, respectively. Among Acari, Oribatida was major group, and Gamasida and Actinedida were minor groups. Abundance of Acari was a little higher in Kwangreng than in Namsan. But there was not significant difference between the arthropod community structure of Namsan and Kwangreng forest. And the different mesh sizes (0.4 mm and 1.7 mm) of litter bags could not make significantly different community structures in the litter bags. One taxon showed different pattern of population dynalics from another. But Oribatida, Gamasida and Collembola showed peak density in July, 1997. All taxa showed lower population densities in cold season i.e. Nov., Jan. and March. There was not significant difference in decomposition rate between Namsan and Kwangreng forest, and between mesh sizes of litter bags. % residual mass of needle leaf was about 40% at 22 months after litter fall.

  • PDF

Monoterpenoids Concentration during Decomposition and Their Effect on Polysphondylium violaceum

  • Kim, Jong-Hee;Hwang, Ji-Young;Jo, Gyu-Gap;Kang, Ho-Nam
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.337-342
    • /
    • 2006
  • The total monoterpenoid content of the pine litter layer and the availability of these compounds as inhibitors/stimulators on Polysphondylium violaceum of cellular slime molds were investigated. In order to determine the several monoterpenoids in the natural environment, we examined their concentrations in fresh, senescent, and decaying needles from 3 pine species (Pinus densiflora, P. thunbergii, P. rigida) by litter bag method. Total monoterpenoid content was highest in the fresh needles, but also remained relatively high in senescent needles. The effect of monoterpenoids identified from Pinus plants on the growth of P. violaceum was studied. We tested four concentrations (1, 0.1, 0.01, and $0.001\;{\mu}g/{\mu}L$) of each compound by using a disk volatilization technique. Each compound was treated after germination of spores of P. violaceum. All of the compounds at $1\;{\mu}g/{\mu}L$ concentration had a very strong inhibitory effect on cell growth of P. violaceum. Fenchone at all concentrations, myrcene, verbenone, bornyl acetate, and limonene at low concentrations stimulated the growth of P. violaceum. These results suggest that inhibitory or enhancing effects of selected monoterpenoids depend upon the concentration of the individual compound.

Effects of fallen blossoms of Prunus spp. on nutrient dynamics in an artificial pond ecosystem (벚나무류 낙화가 인공 연못생태계의 물질순환에 미치는 영향)

  • Lee, Bo Eun;Jeon, Young Joon;Jang, You Lim;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.203-208
    • /
    • 2015
  • To identify the effect of fallen cherry blossom on the artificial pond ecosystem, microcosm experiment was conducted into the aquatic decomposition of Prunus species petals. Petals were put in $1mm^2$ mesh nylon litter bags. For treatment group, one flower litter bag was placed into each pot microcosm ($27{\times}20{\times}8cm^3$) filled with influent water from the artificial pond, whereas control group microcosm contained pond water only. Decomposition time were set differently (4, 8, 12, 16 days) among treatment groups. At the end of experiment, most petals were decomposed and only 32.3% of initial dry weight remained with the decay rate (k) of $7.06{\times}10^{-2}day^{-1}$. $NO_3-N$ concentration of microcosm water decreased sharply from 1.90 mg/L at first to 0.02 mg/L, whereas $NH_4-N$ concentration increased from 0.03 mg/L to 2.85 mg/L continually. $PO_4-P$ concentration was 0.03 mg/L at first and increased to 2.39 mg/L by decomposition. Therefore, available phosphorus seems to have leached with higher rate than nitrogen from the petals litter. Increase about 0.02 mg/L in $PO_4-P$ concentration could be estimated in artificial pond from the calculation on the total quantity of fallen blossoms. This result suggests that available phosphorus from the decomposed Prunus petals could cause eutrophication in the artificial pond.

Community Analysis of Oribatid Mites (Acari : Oribatida) in the Process of Needle Leaf Decomposition in Korean Pine (Pinus koraiensis) Forest of Namsan and Kwangreung (남산과 광릉지역의 잣나무림에서 낙엽분해과정에 관련된 날개응애 군집분석)

  • 배윤환
    • The Korean Journal of Soil Zoology
    • /
    • v.6 no.1_2
    • /
    • pp.25-31
    • /
    • 2001
  • Oribatid mite communities in the process of litter decomposition were analyzed In Korean pine (Pinus koraiensis) forests of Namsan and Kwangreung, which were supposed to be under different environmental selective pressures. Oribatid mites were collected bimonthly from the litter bags (mesh size 0.4 mm, 1.7 mm) which was set up in the forest floor of study sites. This study had been carried out from Jan., 1997 to Sept., 1998. Species abundance of Kwangreung (mesh size 1.7 mm) was significantly higher than that of Namsan (mesh size 1.7 mm), but total no. of species did not exceed 30 species in all study sites. Concerning body length, medium sized oribatid mites (0.3-0.7mm) were more abundant than small ( < 0.3 mm) and large ( > 0.7 mm) sized mites. In Kwangreung, species whose body lengths were 0.2 mm to 0.5 mm were major group. However, a little larger species than Kwangreung's major group were dominant in Namsan. Sorenson similarity index and cluster analysis suggested that there were qualitative and quantitative differences in species composition in Namsan and Kwangreung. More species were collected in May through September than the other sampling times, but the pattern was rather different between first year and second year. Newly immigrant species were high in May in the first year and many of them regained on next year. Diversity indices suggested that species diversity of Kwangreung was higher than that of Namsan. Nearly 70% of total individual abundance was occupied by several dominant species in Namsan and Kwangreung . In the litter bags of mesh size 1.7 mm, the most dominant species was Trichogalumna nipponica in Namsan and Kwangreung, but in the litter bags of mesh size 0.4 mm in Kwangreung it was Ramusella sengbuschi which is smaller than T. nipponica. And important species related to litter decomposition were selected as follows; T. nipponica, Epidamaeus coreanus, Scheloribates latipes, Ceratozetes japonicus, Ramusella sengbuschi, Eohypochthonius crassisetiger, and Cultroribula lata.

  • PDF

A Glove Box for the Subsampling of Suboxic and Cold Core Sediment (아산화 및 저온의 코아 퇴적물 중 부시료 채취를 위한 글러브박스)

  • JUNG, HOI-SOO;KWEON, SOO-JAE;KIM, CHONG-KUN
    • 한국해양학회지
    • /
    • v.25 no.4
    • /
    • pp.240-244
    • /
    • 1990
  • To solve two problems, temperature shock to the man and difficulty in exchanging the air in the glove box into N2 gas, during the subsampling of Suboxic and cold core sediments, a portable glove box with a refrigerating machine and a gas exchanging bag was constructed for subsampling of sediment cores on board. The refrigerator of the glove box can cool down 200 litter air at 30$^{\circ}C$ to 2$^{\circ}C$${\pm}$2$^{\circ}C$ within 5 minutes. The box was successfully operated during the second KORDI's deep sea research cruise of 1989 in the North equatorial Pacific. Pore water data obtained from the cruise show no evidence for artifacts caused by warming up or oxidation of sediments during subsampling.

  • PDF