• 제목/요약/키워드: lithography process

검색결과 550건 처리시간 0.025초

광자결정 도파로 성형용 PDMS 스탬프 제작 (PDMS Stamp Fabrication for Photonic Crystal Waveguides)

  • 오승훈;최두선;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.

열 나노임프린트 리소그래피를 위한 패턴의 결함 향상에 관한 실험적 연구 (Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography)

  • 박형석;신호현;서상원;성만영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권5호
    • /
    • pp.223-230
    • /
    • 2006
  • The reliability of imprint patterns molded by stamps for industrial application of nanoimprint lithography (NIL), is an important issue. Usually, defects can be produced by incomplete filling of negative patterns and the shrinkage phenomenon of polymers in conventional NIL. In this paper, the patterns that undergo a varied temperature or varied pressure period during the thermal NIL process have been investigated, with the goal of resolving the shrinkage and defective filling problems of polymers. The effects on the formation of polymer patterns in several profiles of imprint processes are also studied. Consequently, it is observed that more precise patterns are formed by the varied temperature (VT-NIL) or varied pressure (VP-NIL). The NIL (VT-NIL or VP-NIL) process has a free space compensation effect on the polymers in stamp cavities. From the results of the experiments, the polymer's filling capability can be improved. The VT-NIL is merged with the VP-NIL for the better filling property. The patterns that have been imprinted in the merged NIL are compared with the results of conventional NIL. In this study, the improvement in the reliability for results of thermal NIL has been achieved.

대면적 UV 임프린팅 공정에서 고무 롤러에 의한 압력분포 (Pressure Distribution by Rubber Roller in Large-area UV Imprinting Lithography Process)

  • 김남웅;김국원;이우영
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.91-96
    • /
    • 2010
  • In recent years there have been considerable attentions on nanoimprint lithography (NIL) by the display device and semiconductor industry due to its potential abilities that enable cost-effective and high-throughput nanofabrication. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper we consider the roll-to-plate type imprinting process. In the process a glass mold, which is placed upon the 2nd generation TFT-LCD glass sized substrate(370${\yen}$470 mm), is rolled by a rubber roller to achieve a uniform residual layer. The pressure distribution on the glass mold by rolling of the rubber roller is crucial information to analyze mold deformation, transferred pattern quality, uniformity of residual layer and so forth. In this paper the quantitative pressure distribution induced by rolling of the rubber roller was calculated with finite element analysis under the assumption of Neo-Hookean hyperelastic constitutive relation. Additionally the numerical results were verified by the experiments.

분자동역학 전산모사를 이용한 나노임프린트 리소그래피 공정에서의 스탬프-레지스트 간의 상호작용 및 원자분포에 관한 연구 (A study on the stamp-resist interaction mechanism and atomic distribution in thermal NIL process by molecular dynamics simulation)

  • 양승화;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.343-348
    • /
    • 2007
  • Molecular dynamics study of thermal NIL (Nano Imprint Lithography) process is performed to examine stamp-resist interactions. A layered structure consists of Ni stamp, poly-(methylmethacrylate) thin film resist and Si substrate was constructed for isothermal ensemble simulations. Imposing confined periodicity to the layered unit-cell, sequential movement of stamp followed by NVT simulation was implemented in accordance with the real NIL process. Both vdW and electrostatic potentials were considered in all non-bond interactions and resultant interaction energy between stamp and PMMA resist was monitored during stamping and releasing procedures. As a result, the stamp-resist interaction energy shows repulsive and adhesive characteristics in indentation and release respectively and irregular atomic concentration near the patterned layer were observed. Also, the spring back and rearrangement of PMMA molecules were analyzed in releasing process.

  • PDF

광 PCB의 광 회로층 제작 및 패키징 기술 (Fabrication for Optical Layer and Packaging Technology of Optical PCB)

  • 김태훈;허석환;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, data throughput of smart electric devices increases dramatically. There is a great interest in a new technology which exceeds the limit of electrical transmission method. Optical PCB can supplement the weakness of electrical signal processing, the research for optical PCB is very active. In this paper, we propose the thermal imprint lithography process to fabrication optical layer of optical PCB and experiment to optimize the process conditions. We confirm process time, pressure, process temperature, demolding temperature and fabricate optical interconnection structure which has $45^{\circ}$ tilted mirror surface for confirm the interconnection efficiency.

Determination of Process Parameters in Stereo lithography Using Neural Network

  • Lee, Eun-Dok;Sim, Jae-Hyung;Kweon, Hyeog-Jun;Paik, In-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.443-452
    • /
    • 2004
  • For stereo lithography process, accuracy of prototypes is related to laser power, scan speed, scan width, scan pattern, layer thickness, resin characteristics and etc. An accurate prototype is obtained by using appropriate process parameters. In order to determine these parameters, the stereolithography (SLA) machine using neural network was developed and efficiency of the developed SLA machine was compared with that of the traditional SLA. Optimum values for scan speed, hatching spacing and layer thickness improved the surface roughness and build time for the developed SLA.

레이저를 이용한 차세대 평판 디스플레이 공정 (Laser Microfabrications for Next-Generation Flat Panel Display)

  • 김광열
    • 한국재료학회지
    • /
    • 제17권7호
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

DVD/Blu-ray 스템퍼를 이용한 핫엠보싱 특성 (Characteristics of Hot Embossing using DVD/Blu-ray Stamper)

  • 김병희;반준호;신재구;김헌영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.305-310
    • /
    • 2004
  • The Hot Embossing Lithography(HEL) as a method for the fabrication of nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this study, we investigated the characteristics of hot embossing lithography as a nanoreplication technique. To grasp characteristics of nano patterning rheology by process parameters(embossing temperature, pressure and time), we have carried out various experiments by using the DVD(400nm pattern width) and Blu-ray nickel stamps(150nm pattern width). During the hot embossing process, we have observed the characteristics of the size effect. The quality of products made by hot embossing is affected by its cooling shrinkage. The demolding process at the glass transition temperature results in low quality because of the shrinkage of the polymer. Therefore, the quantification of the temperature condition is essential for the replication of high quality.

  • PDF

수정된 DXRL 공정에 의한 미세구조 제작 (Fabrication of a Micro-Structure by Modified DXRL Process)

  • 한상필;정명영;정석원;김진태
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1517-1523
    • /
    • 2003
  • Deep X-ray lithography (DXRL), a fabrication method for the production of microstructures with a high aspect ratio, plays an important role in the subsequent electroplanting process. However, secondary radiation is generated during X-ray exposure and damages the resist adhesion to the metal layer. To solve adhesion problems, we modified the conventional DXRL process, changing the sequence of polymer adhesion in DXRL process. With optimized X-ray exposure and development conditions based on a calculated and modified X-ray power spectrum, we fabricated various polymer microstructures and achieved a maximum aspect ratio of 40.

가연성 소재 기반의 에너지 하베스터 연구 (A Research for Piezoelectric Energy Harvesters Based on Flammable Material)

  • 강우석;고중혁
    • 한국전기전자재료학회논문지
    • /
    • 제27권12호
    • /
    • pp.863-865
    • /
    • 2014
  • Energy problem has been issued in worldwide because fossil fuel has being almost exhausted. A lot of renewable energy have been received attention to replace the energy from fossil fuel. Among them, piezoelectric energy harvester is one of excellent candidates. In general, micro scaled small sized energy harvesters were usually based on the lithography process. However, these lithography process require complicated process and high cost. In this paper, a new process has been proposed for micro-scaled piezoelectric energy harvester. $0.2Pb(Mg_{1/3}Nb_{2/3})O_3-0.8Pb(Zr_{0.52}Ti_{0.48})O_3$ composition was used as piezoelectric material due to excellent piezoelectric properties and also can be easily prepared by mixed oxide method.