• 제목/요약/키워드: lithium ion secondary batteries

검색결과 165건 처리시간 0.022초

The Current Situation for Recycling of Lithium Ion Batteries

  • Hiroshi Okamoto;Lee, Sang-Hoon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.252-256
    • /
    • 2001
  • The rapid development of communication equipment and information processing technology has led to a constant improvement in cordless communication. Lithium ion batteries used in cellular phones and laptop computers, in particular, have been in the forefront of the above revolution. These batteries use high value added raw materials and have a high and stable energy output and are increasingly coming into common use. The development of the material for the negative terminal has led to an improvement in the quality and efficiency of the batteries, whereas a reduction in the cost of the battery by researching new materials for the positive anode has become a research theme by itself. These long life batteries, it is being increasingly realized, can have value added to them by recycling. Research is increasingly being done on recycling the aluminum case and the load casing for the negative diode. This paper aims to introduce the current situation of recycling of lithium ion batteries. 1. Introduction 2. Various types of batteries and the situation of their recycling and the facts regarding recycling. 3. Example of cobalt recycling from waste Lithium ion secondary cell. 3-1) Flow Chart of Lithium ion battery recycling 3-2) Materials that make a lithium ion secondary cell. 3-3) Coarse grinding of Lithium ion secondary cell, and stabilization of current discharge 3-4) Burning 3-5) Grinding 3-6) Magnetic Separation 3-7) Dry sieving 3-8) Dry Classifying 3-9) Content Ratio of recycled cobalt parts 3-10) Summary of the Line used for the recovery of Cobalt from waste Lithium ion battery. 4. Conclusion.

  • PDF

리튬 이차전지 기술 동향 (Technology Trends for Lithium Secondary Batteries)

  • 최윤호;정형석
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.90-99
    • /
    • 2023
  • Recently, with the trend of information technology convergence and electrification, batteries are being widely used in fields such as industry, transportation, and specific applications. By 2030, the secondary battery market is expected to grow explosively by more than eight times compared with 2020 to $351.7 billion owing to the expanding adoption of electric vehicles. Depending on the electrochemical reactions in the electrode, a primary battery can only discharge through an irreversible reaction, while a secondary battery can be repeatedly charged and discharged using reversible reactions. According to the type of charge carrier ions, secondary batteries may be classified into those made of lithium, sodium, potassium, magnesium, and aluminum ions. We analyze the current status and technological issues of lithium-ion batteries, lithium-sulfur batteries, and solid-state batteries, which are representative examples of lithium secondary batteries. In addition, research trends in lithium secondary batteries are discussed.

최근 휴대폰용 배터리의 기술개발 동향 (Recent Trend of Lithium Secondary Batteries for Cellular Phones)

  • 이형근;김영준;조원일
    • 전기화학회지
    • /
    • 제10권1호
    • /
    • pp.31-35
    • /
    • 2007
  • 이 리뷰를 통하여, 휴대폰용 리튬이차전지의 최근 기술동향을 설명하였다. 휴대폰용 이차전지로는 니카드, 니켈-금속수소, 리튬이온 혹은 리튬이온폴리머의 세 가지 형태의 전지가 있으며, 리튬 이차전지가 에너지밀도 측면에서 가장 성능이 우수하다. 즉, 동일한 용량을 갖는 이차전지 가운데 가장 작고 가벼운 것은 리튬이차전지이다. 이러한 리튬이차전지의 시장은 매년 약 15%의 높은 성장을 기록하고 있다. 연구개발은 $LiFePO_4$를 포함하는 새로운 양극, $Li_4Ti_5O_{10}$, Si, 주석 등의 새로운 음극소재, 새로운 전해질과 안정성 확보에 관한 것을 중심으로 진행되고 있다.

포스트 리튬 이차전지 기술 동향 (Technology Trends in Post-Lithium Secondary Batteries)

  • 최윤호;정형석
    • 전자통신동향분석
    • /
    • 제38권6호
    • /
    • pp.128-136
    • /
    • 2023
  • Lithium accounts for only 0.0017% of the earth crust, and it is produced in geographically limited regions such as South America, the United States, and China. Since the first half of 2017, the price of lithium has been continuously increasing, and with the rapid adoption of electric vehicles, lithium resources are expected to be depleted in the near future. In addition, economic blocs worldwide face intensifying scenarios such as competition for technological supremacy and protectionism of domestic industries. Consequently, Korea is deepening its dependence on China for core materials and is vulnerable to the influence of the United States Inflation Reduction Act. We analyze post-lithium secondary battery technologies that rely on more earth-abundant elements to replace lithium, whose production is limited to specific regions. Specifically, we focus on the technological status and issues of sodium-ion, zinc-air, and redox-flow batteries. In addition, research trends in post-lithium secondary batteries are examined. Post-lithium secondary batteries seem promising for large-capacity energy storage systems while reducing the costs of raw materials compared with existing lithium-based technologies.

Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials

  • Kim, Sang Woo;Cho, Kuk Young
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권1호
    • /
    • pp.1-6
    • /
    • 2015
  • With increasing interest in flexible electronic devices and wearable appliances, flexible lithium ion batteries are the most attractive candidates for flexible energy sources. During the last decade, many different kinds of flexible batteries have been reported. Although research of flexible lithium ion batteries is in its earlier stages, we have found that developing components that satisfy performance conditions under external deformation stress is a critical key to the success of flexible energy sources. Among the major components of the lithium ion battery, electrodes, which are connected to the current collectors, are gaining the most attention owing to their rigid and brittle character. In this mini review, we discuss candidate materials for current collectors and the previous strategies implemented for flexible electrode fabrication.

Carbonaceous Materials as Anode Materials for Lithium Ion Secondary Batteries

  • Lee, Seung-Bok;Pyun, Su-Il
    • 전기화학회지
    • /
    • 제6권3호
    • /
    • pp.187-195
    • /
    • 2003
  • The present article is concerned with the overview of carbonaceous materials used as anode materials for lithium ion secondary batteries. This article first classified carbonaceous materials into graphite, soft carbon and hard carbon according to their crystal structures, and then summarised the previous works on the characteristics of lithium intercalation/deintercalation into/from the carbonaceous materials. Finally this article reviewed our recent research works on the mechanism of lithium transport through graphite, soft carbon and hard carbon electrodes from the kinetic view point by the analysis of the theoretical and experimental potentiostatic current transients.

배터리 시뮬레이터를 이용한 리튬이온 배터리와 납축전지 특성분석 (Characteristic Analysis of Lithium-ion Battery and Lead-acid Battery using Battery Simulator)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.127-132
    • /
    • 2024
  • 최근 이차전지는 다양한 산업 분야에서 사용되고 있다. 특히 소형 및 경량의 특성으로 스마트폰, 노트북, 태블릿 등 다양한 휴대용 전자기기에서 높은 에너지 밀도와 충·방전 효율을 토대로 전기자동차와 에너지저장시스템(Energy Storage System, ESS)의 핵심 부품으로 사용되고 있다. 하지만 이차전지의 과도한 충·방전에 따른 수명감소, 파열, 손상, 화재 등의 문제점이 발생하고 있다. 따라서 BMS(Battery Management System)를 통하여 과도한 충·방전을 보호하고 성능을 향상시킨다. 하지만 실제 리튬이온 배터리를 사용하여 BMS의 차단 및 보호범위 설정하는 데 있어서 이차전지의 수명감소, 파열, 손상, 화재의 문제점이 따른다. 따라서 본 논문에서는 배터리 충방전기와 시뮬레이터를 활용하여 이차전지 중 사용이 높은 리튬이온 배터리와 납축전지의 충전 및 방전 특성을 살펴본다.

방전전압에 따른 리튬 이온 2차전지용 음극물질의 전기화학적 특성 (The electrochemical Characteristics on the Anode Material of Lithium Ion Secondary Batteries with Discharge Voltage)

  • 박종광;한태희;정동철;임성훈;한병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권6호
    • /
    • pp.328-334
    • /
    • 2000
  • A lithium ion secondary battery using carbon as a negative electrode has been developed. Further improvements to increase the cell capacity are expected by modifying the structure of the carbonaceous material. There are hopes for the development of large capacity lithium ion secondary batteries with long cycle, high energy density, high power density, and high energy efficiency. In the present paper, needle cokes from petroleum were examined as an anode of lithium ion secondary battery. Petroleum cokes, MCL(Molten Caustic Leaching) treated in Korea Institute Energy Research, were carbonized at various temperatures of 0, 500, 700, $19700^{\circ}C$ at heating rate of $2^{\circ}C$/min for lh. The electrolyte was used lM liPF6 EC/DEC (1:1). The voltage range of charge & discharge was 0.0V(0.05V) ~ 2.0V. The treated petroleum coke at $700^{\circ}C$ had an initial capacity over 560mAh.g which beyond the theoretical maximum capacity, 372mAh/g for LiC6. This phenomena suggests that carbon materials with disordered structure had higher cell capacity than that the graphitic carbon materials.

  • PDF

리튬2차전지의 수명성능평가를 위한 충방전특성 모델링 (Charging/Discharging Modeling of Lithium Secondary Battery for Estimating Cycle Characteristic)

  • 김재언;노대석
    • 한국산학기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.1343-1354
    • /
    • 2007
  • 카메라, 휴대전화, 노트북 등과 같이 휴대 가능한 전기전자기기들은 대부분 2차 전지로부터 전원을 공급받고 있다. 2차 전지로서는 타 전지에 비하여 고 에너지 밀도와 고 전압의 특성을 갖고 있는 리튬2차전지가 가장 많이 활용되고 있으며, 이 특성 때문에 전기자동차, 우주왕복선, 분산전원의 한 형태인 전력 저장장치에까지 그 이용이 확대되고 있다. 그러나, 시스템의 최적성능을 보장하기 위해서는 용도별 싸이클 수명성능을 고려한 충방전 설계 및 이를 위한 전기적 등가모델의 정확성이 필수적이다. 따라서, 본 논문에서는 상용 리튬이차전지의 실제 실험 데이터에 근거하여 충/방전 심도 함수를 도출하고, 리튬이차전지의 수명성능평가를 위한 충/방전 특성 모델을 제안하고, 이의 타당성을 입증하였다.

  • PDF

New Solid Polymer Electrolyte for Lithium Secondary Batteries

  • Park, Jung-Ki;Lee, Yong-Min;Lee, Jun-Young;Ryou, Myeong-Hyeon
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.67-68
    • /
    • 2006
  • Solid polymer electrolyte is very important in the applications to high energy density lithium batteries of high safety. In this work, solid polymer electrolytes based on PE non-woven matrix, hybrid salt, and anion receptor were successfully prepared. They could provide high ion conduction phase with maintaining mechanical strength. They also showed high electrochemical stability and lithium ion transference number. This new type of solid polymer electrolyte is expected to be a good candidate for rechargeable solid state lithium secondary batteries.

  • PDF