• Title/Summary/Keyword: liquid-solid reactions

Search Result 37, Processing Time 0.031 seconds

Phase Transfer Catalyst (PTC) Catalyzed Alkylations of Glycinamides for Asymmetric Syntheses of $\alpha$-Amino Acid Derivatives

  • Park, Seon Yeong;Kim, Hyeon Ju;Im, Dong Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.958-962
    • /
    • 2001
  • The chiral amine auxiliary mediated stereoselective alkylation reactions of glycinamides 1-6 and 15-17 using phase transfer catalyst (PTC) for liquid-solid extraction are described. The secondary N-(diphenylmethylene) glycinamides 1, 2 and 3 give better selectivities and yields than tertiary N-(diphenylmethylene) glycinamides 4, 5 and 6. Alkylation of the glycinamide 1 and 2 using 18-Crown-6 as a PTC in toluene at $-40^{\circ}C$ gives best selectivities and yields. Alkylations of N-(4-chlorophenylmethylene)glycinamides 15, 16 and 17 under same PTC conditions give $\alpha$, $\alpha-disubstituted$ amino acid derivatives 18, 19 and 20 with low diastereoselectivities.

Optimization Condition of Trace Analysis of Fuel Oxygenated Compounds Using The Design of Experiment (DOE) in Solid-Phase Microextraction with GC/FID (고체상미량분석법(SPME-GC/FID)에서 실험계획법을 이용한 연료첨가제 미량분석의 최적조건)

  • An, Sang-Woo;Lee, Si-Jin;Chang, Soon-Woong
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • In this study, Solid-phase micro-extraction (SPME) with Gas Chromatograph using Flame Ionization Detector (GC/FID) was studied as a possible alternative to liquid-liquid extraction for the analysis of Methyl tert-butyl ether (MTBE) and Tertiary-butyl ether (TBA) in water and an optimization condition of trace analysis of MTBE and TBA using the design of experiment (DOE) was described. The aim of our research was to apply experimental design methodology in the optimization condition of trace analysis of fuel oxygenated compounds in soil-phase microextraction with GC/FID. The reactions of SPME were mathematically described as a function of parameters of Temp ($X_1$), Volume ($X_2$), Time ($X_3$) and Salt ($X_4$) being modeled by the use of the partial factorial designs, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The model predicted agreed with the experimentally observed result ($Y_1$(MTBE, $R^2$ = 0.96, $Y_2$ (TBA, $R^2$ = 0.98)). The estimated ridge of the expected maximum responses and optimal conditions for MTBE and TBA were 278.13 and (Temp ($X_1$) = $48.40^{\circ}C$, Volume ($X_2$) = 73.04 mL, Time ($X_3$) = 11.51 min and Salt ($X_4$) = 12,50 mg/L), and 127.89 and (Temp ($X_1$) = $52.12^{\circ}C$, Volume ($X_2$) = 88.88mL, Time ($X_3$) = 65.40 min and Salt ($X_4$) = 12,50 mg/L), respectively.

Study on Subcritical Water Degradation of RDX Contaminated Soil in Batch and Dynamic Mode (배치형과 연속흐름형에 의한 토양 중 RDX의 아임계 분해특성 비교연구)

  • Choi, Jae-Heon;Lee, Hwan;Lee, Cheol-Hyo;Kim, Ju-Yup;Park, Jeong-Hun;Jo, Young-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.95-102
    • /
    • 2015
  • The purpose of this study is to compare the degradation characteristics by subcritical water of RDX contaminated soil using batch mode and dynamic mode devices. First, upon application of RDX contaminated soil, RDX treatment efficiency was increased with increasing the temperature in both modes. At 150℃, the treatment efficiency was 99.9%. RDX degradation efficiency got higher with lower ratio of solid to liquid. However, the treatment efficiency in the dynamic mode tended to be decreased at a certain ratio of solid to liquid or lower. The treatment efficiency was increased when it took longer time for the reactions in both modes. As the results of analysis on concentration of treated water after subcritical water degradation, the RDX recovery rate of dynamic and batch modes at 150℃ was 10.5% and 1.5%, respectively. However, both modes showed very similar recovery rates at 175℃ or higher. RDX degradation products were analyzed in treated water after it was treated with subcritical water. According to the results, RDX degradation mechanism was mostly oxidation reaction and reduction reaction was partially involved. Therefore, it suggested that most of RDX in soil was degraded by oxidation of subcritical water upon extraction. According to this result, it was found that both batch and dynamic modes were very effectively applied in the treatment of explosive contaminated soil.

Thermodynamic Control in Competitive Anchoring of N719 Sensitizer on Nanocrystalline $TiO_2$ for Improving Photoinduced Electrons

  • Lim, Jong-Chul;Kwon, Young-Soo;Song, In-Young;Park, Sung-Hae;Park, Tai-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.68-69
    • /
    • 2011
  • The process of charge transfer at the interface between two semiconductors or between a metal and a semiconductor plays an important role in many areas of technology. The optimization of such devices requires a good theoretical description of the interfaces involved. This, in turn, has motivated detailed mechanistic studies of interfacial charge-transfer reactions at metal/organic, organic/organic, and organic/inorganic semiconductor heterojunctions. Charge recombination of photo-induced electron with redox species such as oxidized dyes or triiodide or cationic HTM (hole transporting materials) at the heterogeneous interface of $TiO_2$ is one of main loss factors in liquid junction DSSCs or solid-state DSSCs, respectively. Among the attempts to prevent recombination reactions such as insulating thin layer and lithium ions-doped hole transport materials and introduction of co-adsorbents, although co-adsorbents retard the recombination reactions as hydrophobic energy barriers, little attention has been focused on the anchoring processes. Molecular engineering of heterogeneous interfaces by employing several co-adsorbents with different properties altered the surface properties of $TiO_2$ electrodes, resulting to the improved power conversion efficiency and long-term stability of the DSSCs. In this talk, advantages of the coadsorbent-assisted sensitization of N719 in preparation of DSSCs will be discussed.

  • PDF

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte (복합고체 전해질을 적용한 리튬이차전지의 전기화학적 특성)

  • Han, Jong Su;Yu, Hakgyoon;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.100-105
    • /
    • 2021
  • Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.

A Spectroscopic Study on Singlet Oxygen Production from Different Reaction Paths Using Solid Inorganic Peroxides as Starting Materials

  • Li, Qingwei;Chen, Fang;Zhao, Weili;Xu, Mingxiu;Fang, Benjie;Zhang, Yuelong;Duo, Liping;Jin, Yuqi;Sang, Fengting
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1656-1660
    • /
    • 2007
  • Using solid inorganic peroxides (including Li2O2, Na2O2, SrO2 and BaO2) as starting materials, three reaction paths for singlet oxygen (1O2) production were developed and studied. Their 1O2 emission spectra in the near- IR region and visible region from these reaction paths were simultaneously recorded by a near-IR sensitive Optical Multichannel Analyzer and a visible sensitive Optical Spectrum Analyzer, respectively. The comparison of their 1O2 emission spectra indicated that: (1) in term of the efficiency for 1O2 production, the gasliquid- solid reaction path (in which Cl2 or HCl and H2O reacted with the solid inorganic peroxides suspension in CCl4) was prior to the gas-solid reaction path (in which Cl2 or HCl reacted with the solid inorganic peroxides suspension in CCl4), but was inferior to the gas-liquid reaction path (in which Cl2 or HCl reacted with the solid inorganic peroxides solution in H2O or D2O); (2) the alkali metal peroxides (such as Li2O2 and Na2O2) was prior to the alkaline earth metal peroxides (such as SrO2 and BaO2) as the solid reactants, and Cl2 was favorable than HCl as the gas reactant in efficiency for 1O2 production in these reaction paths.

Polymer-Supported Crown Ethers (II). Efficiency for Phase Transfer Catalyst (고분자 물질로 지지된 크라운 에테르류(II) 상이동 촉매 효능)

  • Jae Hu Shim;Kwang Bo Chung;Seung Hyun Chang;Dae Kyung Song;Yong Kiel Sung
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.593-602
    • /
    • 1988
  • Polymer-supported crown ethers (Ps-CE) which can be used for phase-transfer catalyst (PTC) were synthesized for the purpose of allowing reusable function to ordinary crown ethers, and the kinetics of the liquid-solid-liquid triphase-catalyzed nucleophilic displacement reaction of iodide (aqueous phase) on 1-bromooctane (organic phase) using synthesized Ps-CE (solid) were studied. Ps-CE were obtained by grafting of hydroxymethyl crown ethers to 1~2% cross-linked chloromethylated polystyrene. All reactions followed a pseudo-first order dependency on the 1-bromooctane concentration and the observed rate constants $(k_{obsd})$ were linearly related to the molar equivalents of Ps-CE, and were subjected to the influence of cross-linking density of polymer backbone, solvent and the reaction temperature. The catalytic activity of Ps-CE was also compared with that of structurally similar soluble crown ethers, and used Ps-CE were easily recovered after the reaction by simple filtration and could be reused without loss of catalytic activity in the same anionic displacement reaction. Enthalpies and entropies of activation associated with the displacement were 10~20kcal $mol^{-1}, 20~55eu. respectively, and the free energy of activation was ~30kcal mol^{-1}$.

  • PDF

Structural Control of Single-Crystalline Metal Oxide Surfaces toward Bioapplications

  • Ogino, Toshio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.112-112
    • /
    • 2013
  • Well-defined surfaces of single-crystalline solid materials are starting points of self-organizationof nanostructures and chemical reactions controlled in nanoscale. Although highly ordered atomicarrangement can be obtained on semiconductor surfaces, they can be maintained only in vacuumand not in air or in aqueous environment. Since single-crystalline metal oxide surfaces arechemically stable and no further oxidation occurs, their atomic structures can be utilized fornanofabrication in liquid processes, nanoelectrochemistry and nanobiotechnology. Sapphire is oneof the most stable metal oxides and its crystalline quality is excellent, as can be applied to electronicdevices that require ultralow defect densities. We recently found that chemical phase separationoccurs on sapphire surfaces by annealing processes and the formed nanodomains exhibit specificproperties in air and in water [1,2]. In our experiments, highly selective and controllable adsorptionof various protein molecules is observed on the phase-separated surfaces though the materials andcrystallographic orientations are identical [3,4]. Planar lipid bilayers supported on thephase-separated sapphire surface also exhibit a specific formation site selectivity [5]. Chemicalnanodomains appear on other metal-oxide surfaces, such as well-ordered titania surfaces. Wedemonstrate that surface chemistry of the nanodomains can be characterized in aqueousenvironment using atomic force microscopy equipped with colloidal tips and then show adsorptionand desorption behaviors of various proteins on the phase-separated surfaces.

  • PDF

Proteomic and Phenotypic Analyses of a Putative YggS Family Pyridoxal Phosphate-Dependent Enzyme in Acidovorax citrulli

  • Lynn Heo;Yongmin Cho;Junhyeok Choi;Jeongwook Lee;Yoobin Han;Sang-Wook Han
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.235-244
    • /
    • 2023
  • Acidovorax citrulli (Ac) is a phytopathogenic bacterium that causes bacterial fruit blotch (BFB) in cucurbit crops, including watermelon. However, there are no effective methods to control this disease. YggS family pyridoxal phosphate-dependent enzyme acts as a coenzyme in all transamination reactions, but its function in Ac is poorly understood. Therefore, this study uses proteomic and phenotypic analyses to characterize the functions. The Ac strain lacking the YggS family pyridoxal phosphate-dependent enzyme, AcΔyppAc(EV), virulence was wholly eradicated in geminated seed inoculation and leaf infiltration. AcΔyppAc(EV) propagation was inhibited when exposed to L-homoserine but not pyridoxine. Wild-type and mutant growth were comparable in the liquid media but not in the solid media in the minimal condition. The comparative proteomic analysis revealed that YppAc is primarily involved in cell motility and wall/membrane/envelop biogenesis. In addition, AcΔyppAc(EV) reduced biofilm formation and twitching halo production, indicating that YppAc is involved in various cellular mechanisms and possesses pleiotropic effects. Therefore, this identified protein is a potential target for developing an efficient anti-virulence reagent to control BFB.

Electrochemical Lithium Intercalation within Graphite from Ionic Liquids containing BDMI+ Cation (BDMI+ 양이온을 함유한 이온성 액체로부터 흑연으로의 전기화학적 리튬 삽입)

  • Lee, You-Shin;Jeong, Soon-Ki;Lee, Heon-Young;Kim, Chi-Su
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2010
  • In situ electrochemical atomic force microscopy (ECAFM) observations of the surface of highly oriented pyrolytic graphite (HOPG) was performed before and after cyclic voltammetry in lithium bis(fluorosulfonyl)imide (LiTFSI) dissolved in 1-buthyl-2,3-dimethylimidazolium (BDMI)-TFSI to understand the interfacial reactions between graphite and BDMI-based ionic liquids. The formation of blisters and the exfoliation of graphene layers by the intercalation of $BDMI^+$ cations within HOPG were observed instead of reversible lithium intercalation and de-intercalation. On the other hand, lithium ions are reversibly intercalated into the HOPG and de-intercalatied from the HOPG without intercalation of the $BDMI^+$ cations in the presence of 15 wt% of 4.90 mol/$kg^{-1}$ LiTFSI dissolved in propylene carbonate (PC). ECAFM results revealed that the concentrated PC-based solution is a very effective additive for preventing $BDMI^+$ intercalation through the formation of solid electrolyte interface (SEI).