• Title/Summary/Keyword: liquid rubber

Search Result 164, Processing Time 0.02 seconds

Wet adhesion and rubber friction in adhesive pads of insects

  • Federle, Walter
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.31-42
    • /
    • 2004
  • Many animals possess on their legs adhesive pads, which have undergone evolutionary optimization to be able to attach to variable substrates and to control adhesive forces during locomotion. Insect adhesive pads are either relatively smooth or densely covered with specialized adhesive hairs. Theoretical models predict that adhesion can be increased by splitting the contact zone into many microscopic, elastic subunits, which provides a functional explanation for the widespread 'hairy' design. In many hairy and all smooth attachment systems, the adhesive contact is mediated by a thin film of liquid secretion between the cuticle and the substrate. By using interference reflection microscopy (IRM), the thickness and viscosity of the secretion film was estimated in Weaver ants (Oecophylla smaragdina). 'Footprint' droplets deposited on glass are hydrophobic and form low contact angles. IRM of insect pads in contact showed that the adhesive liquid is an emulsion consisting of hydrophilic, volatile droplets dispersed in a persistent, hydrophobic phase. I tested predictions derived from film thickness and viscosity by measuring friction forces of Weaver ants on a smooth substrate. The measured friction forces were much greater than expected assuming a homogenous film between the pad and the surface. The findings indicate that the rubbery pad cuticle directly interacts with the substrate. To achieve intimate contact between the cuticle and the surface, secretion must drain away, which may be facilitated by microfolds on the surface of smooth insect pads. I propose a combined wet adhesion/rubber friction model of insect surface attachment that explains both the presence of a significant static friction component and the velocity-dependence of sliding friction.

  • PDF

Performance Comparison of Liquid-Cooling with Air-Cooling Heat Exchangers Designed for Telecommunication Equipment

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kang, Hoon;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • Electronic and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, air-cooling heat exchangers were tested to provide performance data for the comparison with the liquid-cooling heat exchangers. The liquid-cooling heat exchangers had twelve rectangular channels with different flow paths of 1, 2, and 12. Silicon rubber heaters were used to control the heat load to the heat exchangers. Heat input ranged from 293 to 800W, and inlet temperatures of working fluid varied from 15 to $27^{\circ}C$. The heat transfer coefficients were strongly affected by flow conditions. All liquid-cooling heat exchangers showed higher cooling performance than the air-cooling heat exchanger. The heat exchanger with 2-paths could provide more controllability on the maximum temperature than the others.

A Study on Physical Properties of Epoxy Resin Filled with Surface-treated Silica: I. Surface-treating of Silica and Properties of Mixtures (표면처리된 실리카를 충전한 에폭시 수지계의 물성에 관한 연구 I. 실리카의 표면처리 및 혼합 물성)

  • Hong, Suk-Pyo;Choi, Sang-Goo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 1990
  • Surface of crystalline silica was sequentially reacted with silane(A 187), liquid rubber(CTBNx8) and vinyl monomer(AA, MMA, 2-HEA, GMA) in existance of amines(TEA, CTMAB, BETAC) or peroxide(BPO). By mixing it with epoxy resin at a ratio 0~36%(volume %) of total component, liquid properties of mixtures was investigated experimentally. i) Coating ratio depended on quantity and sorts of catalyst. ii) Total coating of 2.5~5.8% was attained by using 0.1~2.0% of catalyst. iii) Treated surfaces represented each different features in according to sorts of treatment. iv) Silane/rubber or silane/rubber/vinyl represented lower viscosity and settling than non-treated or silane-treated.

  • PDF

Preparation of Silica-Filled SBR Compounds with Low Rolling Resistance by Wet Masterbatch

  • Yang, Jae-Kyoung;Park, Wonhyeong;Ryu, Changseok;Kim, Sun Jung;Kim, Doil;Seo, Gon
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.26-39
    • /
    • 2020
  • The physical properties of silica-filled SBR compounds (WSBR) prepared using silica-SBR wet masterbatches (WMB) were systematically investigated to understand the effect of the surface treatment of silica on the reinforcement performance of SBR. Treatment of silica with bis(triethoxysilylpropyl)tetrasulfide (TESPT) in the liquid phase, followed by mixing with an SBR solution and recovery by water stripping, easily produced silica-SBR WMB. However, insufficient surface treatment in terms of the amount and stability of the incorporated TESPT led to considerable silica loss and inevitable TESPT elution. Pretreatment of silica in the gas phase with TESPT and another organic material that enabled the formation of organic networks among the silica particles on the surface provided hydrophobated silica, which could be used to produce silica-SBR WMB, in high yields of above 99%. The amount and type of organic material incorporated into silica greatly influenced the cure characteristics, processability, and tensile and dynamic properties of the WSBR compounds. The TESPT and organic material stably incorporated into silica increased their viscosity, while the organic networks dispersed on the silica surface were highly beneficial for reducing their rolling resistance. Excessive dosing of TESTP induced low viscosity and a high modulus. The presence of connection bonds formed by the reaction of glycidyloxy groups with amine groups on the silica surface resulted in physical entanglement of the rubber chains with the bonds in the WSBR compounds, leading to low rolling resistance without sacrificing the mechanical properties. Mixing of the hydrophobated silica with a rubber solution in the liquid phase improved the silica dispersion of WSBR compounds, as confirmed by their low Payne effect, and preservation of the low modulus enhanced the degree of entanglement.

Covalent Adaptable Liquid Crystal Elastomers Comprising Thiourea Bonds: Reprocessing, Reprogramming and Actuation

  • Lee, Jin-Hyeong;Park, Sungmin;Kim, Yong Seok;Kim, Dong-Gyun;Ahn, Suk-kyun
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.55-61
    • /
    • 2022
  • In this work, we report a highly deformable covalent adaptable-liquid crystal elastomer (CA-LCE) comprising dynamic thiourea bonds that enable macromolecular network rearrangement at elevated temperatures. The exchange of chain network is verified through stress-relaxation analyses and follows Arrhenius-type behavior. The unique capability of rearranging the chain network in the CA-LCE provides useful properties, such as welding, melt reprocessing, and shape reprogramming, that cannot be achieved by the conventional LCE comprising permanent crosslinks. Reversible actuation is further demonstrated by reprogramming the polydomain CA-LCE into a monodomain via mechanical stretching at elevated temperatures.

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber (실리카-커플링제-고무의 화학 결합 형성과 특성 분석)

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

Synthesis and Properties of Side Chain Liquid Crystalline Polymers with Siloxane Flexible Chain

  • Park, Jong-Ryul;Bang, Moon-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.173-179
    • /
    • 2017
  • Side-chain liquid crystalline polymers having polysiloxane skeletons were synthesized by a thiol-ene reaction, using two kinds of mesogenic groups: a cholesteryl group for induction into a cholesteric liquid crystal phase and a triazomesogenic group for imparting light-sensitivity. All the synthesized polymers were crystalline, except the one with a single cholesteryl group. Crystallinity, glass transition temperature, and melt transition temperature increased with increasing content of the azomesogenic group. The polymer (P-C10A0) with a single cholesteryl group has a cholesteric phase, the one (P-C0A10) with a single azomesogenic group has a smectic phase, and those with both types of mesogenic groups showed both smectic and cholesteric phases. The temperature ranges of the two liquid crystalline phases in the co-polymers were independent of the contents of the two types of mesogenic groups. The rate of photoisomerization of the light-sensitive azobenzene group in the polymer decreased with increasing azobenzene content due to steric hindrance between the azomesogenic groups.

Tansport Rate of Chromium ion from Waste Water through the Liquid Surfactant Membrane Containing Carrier (운반체 함침 유화액막에 의한 폐수중 크롬(VI)의 이동속도)

  • Woo, In-Sung;Kim, Kyoung-Ho;Lee, Sang-Jin;Kang, An-Soo;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 1988
  • The transport of chromium(VI) ion from waste water through the liquid surfactant membrane containing tri-n-octylamine as a carrier, was analyzed by a slab model and was investigated through experiments. For the experiment of membrane stability, concentrations of surfactant and liquid paraffin oil were analyzed. Extraction experiments were carried out to observe the effect of system variables, such as concentrations of carrier, and initial chromium(VI) ion in external aqueous phase at $25^{\circ}C$. It is concluded that the most stable formation of liquid membrane emulsion was obtained when surfactant concentration is above 3 wt.% and liquid paraffin oil concentration is 50 vol.%. The theoretical equation on the transport of chromium(VI) ion agreed well with the experimental results.

  • PDF

Synthesis and Properties of Combined Main-Chain/Side-Chain Liquid Crystalline Polymers with Cholesteryl and Azobenzene Groups

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Main-chain/side-chain liquid crystalline polymers (MCSCLCPs) combined with an azobenzene group and a cholesteryl group were synthesized to impart light and temperature sensitivity to the polymer. The polymers were designed with the azobenzene unit as the mesogenic group of the main-chain and various compositions of the azobenzene and cholesteryl units as the mesogenic group of the side-chain. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and ultraviolet-visible (UV-Vis) spectroscopy. All the MCSCLCPs were amorphous and exhibited enantiotropic liquid crystal phases; these polymers achieved the nematic phase with increasing content of the azobenzene group and exhibited the cholesteric phase with weak liquid crystallinity as the content of the cholesteryl group was increased. Furthermore, the polymers containing the azobenzene group showed photoisomerization when exposed to UV-Vis light, and the CP-A3C7 and CP-A5C5 polymers exhibited thermochromism in the temperature range of the liquid crystal phase.

Comparisons of Reverse Osmosis and Pervaporation Membrane Processes. I. Theoretical Interpretations. (역삼투와 투과 증발막 공정의 비교. I. 이론적 해석)

  • Rhim, Ji-Won;Lee, Kew-Ho;Bae, Seong-Youl;H
    • Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 1993
  • Reverse osmosis(RO) and pervaporation(PV) membrane processes were compared with each other theoretically by using Paul and Ebra-Lima model. From this model the concentrations of liquid within the membrane when pressure was applied to the upper compartment(for PV case, the applied pressure is infinite) were calculated for rubber membrane-n-hexane and rubber membrane-benzene systems. The permeabilities of RO and PV were also calculated and compared for polyethylene film-n- hexane and polyethylene film- benzene systems Theoretically, the permeabilities of PV membrane were greater than those of RO membrane.

  • PDF