• Title/Summary/Keyword: liquid oxygen line

Search Result 24, Processing Time 0.027 seconds

Cooling of Cryogenic Liquids by Gas Helium Injection (I) (가스분사에 의한 극저온 액체의 냉각에 관한 연구 (I))

  • Song, Yi-Hwa;Choi, Young-Hwan;Kim, Yoo;Chung, Yong-Gahp;Cho, Nam-Kyung;Jeong, Sang-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.141-144
    • /
    • 2003
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using Gas helium injection. This study investigates the effect of helium injection on the liquid nitrogen which simulates the liquid oxygen. By using helium injection, the subcooling of liquid nitrogen can be achieved within four minute when the ratio of gas volume flowrate to the volume of L$N_2$ is approximately v/v$_{L}$≒0.8min$^{-1}$ . .

  • PDF

Numerical Analysis of KSR-III Main Propulsion System Feedlines (KSR-III 추진기관 추진제 공급배관 수치해석)

  • Cho, In-Hyun;Oh, Seung-Hyub;Kang, Sun-Il;Kim, Yong-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.276-281
    • /
    • 2001
  • The KSR-III Main Propulsion System configuration of the liquid oxygen (LOX) feed line is analyzed. This feed line includes a tighter radius and cavitation venturi for flow mass flow-rate passive control. There were concerns that these configurations might generate a great flow distortion at the engine interface. Also both the pressure drop at the feed line and any presence of separation area are a great concern according to the propellant flow. To resolve these issues, a computational fluid dynamic analysis was conducted to determine the flow field in the LOX feed lines.

  • PDF

The Characteristics of Line Heating Using Hydrox Gas (수산소 혼합가스를 이용한 선상가열 특성)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.407-411
    • /
    • 2011
  • The technology of line heating has evolved in various methods. Among them, fossil fuels like ethylene gas and LPG(Liquid Petroleum Gas) are widely used due to their simple utility. In the meantime, the technology implementing high frequency for line heating has also been developed continually, but its manufacturing technology or application includes lots of problems by now. One of the main characteristics of line heating using conventional technolob'Y is the quenching effect followed by heating process. On the other hand, hydrox gas which is mixed by hydrogen and oxygen is a prominent candidate for an application without above shortcomings. Especially, it is found that line heating using hydrox gas is tremendously effective taking low cost as well as low noise. In this paper, a small cell with high efficiency which can minimize installing space is developed to deal with the problem installing in narrow place. Experiments to prove the validation, efficiency and effectiveness is carried out by characterizing in the line heating of steel. It is found that the energy saving of using hydrox gas for line heating is significant and that the deviation performance is reduced by 78~89%. Furthermore, the noise is also reduced as amount of 18.3% though the heating time is not too different.

헬륨가스 분사에 의한 액체질소 냉각에 관한 연구

  • Chung, Yong-Gap;Cho, Nam-Gyeong;Kil, Kyeong-Seop;Song, Yi-Hwa;Kim, Yu;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.205-212
    • /
    • 2004
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using gas helium injection. This paper investigates the effect of helium injection on liquid nitrogen, which simulates the liquid oxygen. By using helium injection, subcooling of liquid nitrogen can be achieved and in the condition of v/vL≒0.8min-¹ approximately in four minutes subcooling temperature can be achieved.

  • PDF

The Possibility and Risk of Generation of Cavitation at the inlet of the Turbopump (선화제펌프 입구에서 캐비테이션 발생 가능성 및 위험성 평가)

  • Kim, Cheul-Woong;Moon, In-Sang;Bershadskiy, V.A
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.279-282
    • /
    • 2006
  • Upon a turbopump's running, cavitation may occur at the inlet of the LOx pump by pressure drop and heat transfer along the LOx feeding line. Since the cavitation can cause serious damage to the pump or to stop running, the absence of the cavitation at the inlet of a turbopump should be confirmed before the using the turbopump. In the present study, the calculation of the volume fraction of LOx gas phase at the inlet of the pump are performed with different temperatures of LOx in the tank, pressure drops and heat transfers along the feeding line. This calculation method can be applied to define the limits of thermal and hydraulic characteristics during the design of a LOx feeding system.

  • PDF

Cysteine improves boar sperm quality via glutathione biosynthesis during the liquid storage

  • Zhu, Zhendong;Zeng, Yao;Zeng, Wenxian
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.166-176
    • /
    • 2022
  • Objective: Sperm is particularly susceptible to reactive oxygen species (ROS) stress. Glutathione (GSH) is an endogenous antioxidant that regulates sperm redox homeostasis. However, it is not clear whether boar sperm could utilize cysteine for synthesis GSH to protect sperm quality from ROS damage. Therefore, the present study was undertaken to elucidate the mechanism of how cysteine is involved in protecting boar sperm quality during liquid storage. Methods: Sperm motility, membrane integrity, lipid peroxidation, 4-hydroxyIlonenal (4-HNE) modifications, mitochondrial membrane potential, as well as the levels of ROS, GSH, and, ATP were evaluated. Moreover, the enzymes (GCLC: glutamate cysteine ligase; GSS: glutathione synthetase) that are involved in glutathione synthesis from cysteine precursor were detected by western blotting. Results: Compared to the control, addition of 1.25 mM cysteine to the liquid storage significantly increased boar sperm progressive motility, straight-line velocity, curvilinear velocity, beat-cross frequency, membrane integrity, mitochondrial membrane potential, ATP level, acrosome integrity, activities of superoxide dismutase and catalase, and GSH level, while reducing the ROS level, lipid peroxidation and 4-HNE modifications. It was also observed that the GCLC and GSS were expressed in boar sperm. Interestingly, when we used menadione to induce sperm with ROS stress, the menadione associated damages were observed to be reduced by the cysteine supplementation. Moreover, compared to the cysteine treatment, the γ-glutamylcysteine synthetase (γ-GCS) activity, GSH level, mitochondrial membrane potential, ATP level, membrane integrity and progressive motility in boar sperm were decreased by supplementing with an inhibitor of GSH synthesis, buthionine sulfoximine. Conclusion: These data suggest that boar sperm could biosynthesize the GSH from cysteine in vitro. Therefore, during storage, addition of cysteine improves boar sperm quality via enhancing the GSH synthesis to resist ROS stress.

Development of Optical Fiber Glucose and Lactate Biosensors for Bioprocess Monitoring (생물공정 모니터링을 위한 광섬유 포도당 및 젖산 센서의 개발)

  • Jung, Chang Hwan;Sohn, Ok-Jae;Rhee, Jong Il
    • KSBB Journal
    • /
    • v.32 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • In this work the optical fiber glucose and lactate biosensors were developed by using fluorescent dye and enzyme immobilized on the end tip of an optical fiber. 3-Glycidyloxypropyl)methyldiethoxysilane (GPTMS), (3-Aminopropyl) trimethoxysilane (APTMS) and Methyltrimethoxysilane (MTMS) were used to immobilize glucose oxidase (GOD), lactate oxidase (LOD) and ruthenium(II) complex (tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II), $Ru(dpp)_3^{2+}$) as oxygen sensitive fluorescent dye. MTMS sol-gel was an excellent supporting material for the immobilization of $Ru(dpp)_3^{2+}$, GOD, and LOD on the optical fiber. Storage stability of the optical fiber glucose sensor was kept constant over 20 days, while the optical fiber lactate sensor had constant storage stability over 17 days. The optical fiber glucose and lactate biosensors also maintained good operational stability for 20 hours and 14 hours, respectively. The activities of the immobilized enzymes were most excellent at pH 7 and at $25^{\circ}C$. On-line monitoring of glucose and lactate in a simulated process was performed with the optical fiber glucose and lactate biosensors. On-line monitoring results were agreed with those of off-line data measured with high performance liquid chromatography (HPLC).

Rayleigh Fractionation of Stable Water Isotopes during Equilibrium Freezing (평형 냉동에 의한 물동위원소의 레일리분별)

  • Lee, Jeonghoon;Jung, Hyejung;Nyamgerel, Yalalt
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • Isotopic compositions of snow or ice have been used to reconstruct paleoclimate and to calculate contribution to streamwater using isotopic hydrograph separation as an end member. During freezing and melting of snow or ice, isotopic fractionation occurs between snow or ice and liquid water. Isotopic evolution during melting process has been studied by field, melting experiments and modeling works, but that during freezing has not been well studied. In this review, isotopic fractionation during equilibrium freezing is discussed using the linear relationship between two stable water isotopes (oxygen and hydrogen) and the Rayleigh fractionation. Snow, evaporated from nearby ocean and condensated, follows the Global Meteoric Water Line (slope of 8), but the melting and freezing of snow affect the linear relationship (slope of 19.5/3.1~6.3). The isotopic evolution of liquid water by freezing observed in the open system during Rayleigh fractionation is also seen in the closed system. The isotopic evolution of snow or ice in the open system where the snow or ice is continuously removed becomes more enriched than the residual liquid water by the fractionation factor. The isotopic evolution of snow or ice in the closed system eventually equals the original isotopic compositions of liquid water. It is expected the understanding of isotopic evolution of snow or ice by freezing to increase the accuracy of the paleoclimate studies and hydrograph separation.

Gradual modification of Nanoimprint Patterns by Oxygen Plasma Treatment

  • Kim, Soohyun;Kim, Da Sol;Park, Dae Keun;Yun, Kum-Hee;Jeong, Mira;Lee, Jae Jong;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.233-233
    • /
    • 2015
  • We report on a simple method for inducing physical and chemical property-gradient on nanoimprinted patterns by intensity-regulated plasma treatment under caved sample stage. As for the size gradient, a line pattern having a linewidth of 294.9 nm was etched to have gradually varying width from 277.4 nm to 147.9 nm. Modified pattern was proven to be adaptable to replica stamp for reversal patterning. To investigate the wettability gradient, imprinted nanopatterns were coated with fluoroalkylsilane to increase the hydrophobicity, and the surface was modified to have gradually varying wettability from hydrophobic to hydrophilic (contact angle was ${\sim}160^{\circ}$ to ${\sim}5^{\circ}$ on a single chip). This method is expected to be applicable to the selective adsorption of biological entities and hydrodynamic manipulation of liquid droplets for the pumpless microfluidics.

  • PDF

A study on the $YBa_{2}Cu_{3}O_{x}$ phase deposition by liquid aerosol PECVD (미립액상 분말에 의한 $YBa_{2}Cu_{3}O_{x}$ 초전도체의 PECVD 증착법)

  • 정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.229-237
    • /
    • 1996
  • The superconducting phase, $YBa_{2}Cu_{3}O_{x}$ (YBCO), was in-situ deposited on the single crystal MgO substrates, using an aerosol decomposition process in a cold plasma reactor. The solubility and decomposition temperature of the chemical precursors, and the vapor pressures of the solvents, were determined to be the factors crucial to achieving a stoichiometric, crystalline YBCO phase. The deposition parameters for the YBCO phase were 0.3 to 2.7 kPa for the oxygen partial pressure and $800^{\circ}C$ to $940^{\circ}C$ for the substrate temperature. The optimum deposition conditions for the YBCO phase were observed along the CuO decomposition line.

  • PDF