• Title/Summary/Keyword: liquid metal

검색결과 1,123건 처리시간 0.033초

PET 직물을 매트릭스로 이용한 Fixed Site Carrier Membrane의 금속이온 투과성 (Fixed Site Carrier Membrane for selective metal ion transport, supported by PET fabric)

  • Kim, Yong-Yl;Soukil Mah
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.219-222
    • /
    • 2001
  • Membranes which selectively transport specific metals on an industrial scale is much useful in a number of applications, such as aqueous stream purification, catalyst and recycling of the reactants, the applications in metal ion sensing and so forth. Numerous studies have been already made to use liquid, supported liquid and, emulsion liquid membranes (LM) for selective carriers for metal ion transport. (omitted)

  • PDF

Studies on the Macrocycle-mediated Transport of Divalent Metal Ions in a Supported Liquid Membrane System

  • 조문환;신상철
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권1호
    • /
    • pp.33-36
    • /
    • 1995
  • Macrocyclic ligands have been studied as cation carriers in a supported liquid membrane system. Cd2+ has been transported using nitrogen substituted macrocycles as carriers and several divalent metal ions (M2+=Zn, Co, Ni, Cu, Pb, Mg, Ca, and Sr) have been transported using DBN3O2, DBN2O2and PolyNtnoen as carriers in a supported liquid membrane system. Competitive Cd2+-M2+ transport studies have also been carried out with the same system. Ligand structure, stability constant, membrane solvent and carrier concentration are also important parameters in the transport of metal ions.

액상확산접합용 인서트금속의 화학조성 최적화에 관한 연구 (A Study on the Optimum Chemical Composition of Insert Metal for Liquid Phase Diffuse Bonding)

  • 김대업;정승부;강정윤
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.90-97
    • /
    • 2000
  • Effect of alloy elements on joinability of insert metal for liquid phase diffusion bonding of heat resistant alloys was investigated in this study. Also, optimum chemical composition of insert metal was explained using interpolation method. The insert metals utilized was commercial Ni-base amorphous foils and newly developed Ni-base filler metals with B, Si and Cr in this study. Melting point and critical interlayer width(CIW) decreased with increasing additional amount of B, Si and Cr, melting point lowering element of the insert metal. Optimized chemical composition of insert metals could be estimated by interpolation method. The optimum amount of B, Si, Cr addition into the insert metal were found to be about 3%, 4% and 3%, respectively. The measured characteristic values, melting point, microhardness in the bonded interlayer and CIW of the insert metals were the almost identical to ones of the calculated results by interpolation method.

  • PDF

Flexible multimode pressure sensor based on liquid metal

  • Zhou, Xiaoping;Yu, Zihao
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.839-853
    • /
    • 2021
  • In this paper, a novel multimode liquid metal-based pressure sensor is developed. The main body of the sensor is composed of polydimethylsiloxane (PDMS) elastomer. The structure of the sensor looks like a sandwich, in which the upper structure contains a cylindrical cavity, and the bottom structure contains a spiral microchannel, and the middle partition layer separates the upper and the bottom structures. Then, the liquid metal is injected into the top cavity and the bottom microchannel. Based on linear elastic fracture mechanics, the deformation of the microchannel cross-section is theoretically analyzed. The changes of resistance, capacitance, and inductance of the microchannel under pressure are deduced, and the corresponding theoretical models are established. The theoretical values of the pressure sensor are in good agreement with experimental data, implying that the developed theoretical model can explain the performance of the sensor well.

Experimental validation of simulating natural circulation of liquid metal using water

  • Lee, Min Ho;Jerng, Dong Wook;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1963-1973
    • /
    • 2020
  • Liquid metal-cooled reactors use various passive safety systems driven by natural circulation. Investigating these safety systems experimentally is more advantageous by using a simulant. Although numerous experimental approaches have been applied to natural circulation-driven passive safety systems using simulants, there has been no clear validation of the similarity law. To validate the similarity law experimentally, SINCRO-V experiment was conducted using Wood's metal and water for simulant of the Wood's metal. A pair of SINCRO-V facilities with length-scale ratio of 14.1:1 for identical Bo' was investigated, which was the main similarity parameter in temperature field simulation. In the experimental range of 0.2-1.0% of decay heat, the temperature distribution characteristics of the small water facility were very similar to that of the large Wood's metal facility. The temperature of the Wood's metal predicted by the water experiment showed good agreement with the actual Wood's metal temperature. Despite some error factors like discordance of Gr' and property change along the temperature, the water experiment predicted the Wood's metal temperature with an error of 27%. The validity of the similarity law was confirmed by the SINCRO-V experiments.

BONDING PHENOMENON IN TRANSIENT LIQUID PHASE BONDING OF NI BASE SUPERALLOY GTD-111

  • Kang, Chung-Yun;Kim, Dae-Up;Woo, In-Soo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.798-802
    • /
    • 2002
  • Metallurgical studies on the bonded interlayer of directionally solidified Ni-base superalloy GTD111 joints were carried out during transient liquid phase bonding. The formation mechanism of solid during solidification process was also investigated. Microstructures at the bonded interlayer of joints were characterized with bonding temperature. In the bonding process held at 1403K, liquid insert metal was eliminated by well known mechanism of isothermal solidification process and formation of the solid from the liquid at the bonded interlayer were achieved by epitaxial growth. In addition, grain boundary formed at bonded interlayer is consistent with those of base metal. However, in the bonding process held at 1453K, extensive formation of the liquid phase was found to have taken place along dendrite boundaries and grain boundaries adjacent to bonded interlayer. Liquid phases were also observed at grain boundaries far from the bonding interface. This phenomenon results in liquation of grain boundaries. With prolonged holding, liquid phases decreased gradually and changed to isolated granules, but did not disappeared after holding for 7.2ks at 1473K. This isothermal solidification occurs by diffusion of Ti to be result in liquation. In addition, grain boundaries formed at bonded interlayer were corresponded with those of base metal. In the GTD-ll1 alloy, bonding mechanism differs with bonding temperature.

  • PDF

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

구리박막에서 수은 클러스터의 충돌거동에 대한 분자동역학적 연구 (Molecular Dynamics Study on Collision Behaviors of Cluster of Mercury on Thin-Film of Copper)

  • 정흥철;고선미;최경민;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2678-2683
    • /
    • 2007
  • The interaction between metal molecules and liquid metal molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand behaviors of the cluster on metallic surface in collision process. Lennard-Jones potential had been used as intermolecular potential, and only attraction 때 d repulsion had been used for the behavior of the cluster on the metal surface. As results, the behavior of the cluster was so much influenced by the cluster of liquid metal temperature and function of molecules forces, such as attraction and repulsion, in the collision progress. These results of simulation will be the foundation for the micro fabrication manufacturing by using spray application technology.

  • PDF

Fe 기내열합금의 액상확상접합용 삽입금속의 개발에 관한 연구 (A Study on Development of Insert Metal for Liquid Phase Diffusion Bonding of Fe Base Heat Resistance Alloy)

  • 강정윤;김인배;이상래
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.147-156
    • /
    • 1995
  • The change of microstructure in the bonded interlayer and tensile properties of joints were studied for liquid phase diffusion bonding using STS-310 and Incoloy-825 as base metal and base metal+B alloy as insert inetal. Main experimental results obtained in this study are as follows. 1) The optimum amount of B addition into the insert metal was found to be about 4mass%. 2) When isothermal solidification was completed, the microstructure in the bonded interlayer was the same with that of the base metal because of the grain boundary migration in the bonded interlayer. 3) All of the tensile specimen fractured at base metal and joints bonded at optimum condition exhibited tensile properties in excess of base metal requirements. 4) It was determined that fine car-borides and bordes such as M$_{23}$(C,B)$_{6}$, Cr$_{2}$B, and CrB in STS-310S and TiB in Incoloy-825 exist at the grain boundary around bonded interlayer. These precipitates almost disappeared after homogenizing treatment at 1373K for 86.4ks.s.

  • PDF

Electrodeposition of Some Selective Metals Belonging to Light, Refractory and Noble Metals from Ionic Liquid Electrolytes

  • Dilasari, Bonita;Kwon, Kyung-Jung;Lee, Churl-Kyoung;Kim, Han-Su
    • 전기화학회지
    • /
    • 제15권3호
    • /
    • pp.135-148
    • /
    • 2012
  • Ionic liquids are steadily attracting interests throughout a recent decade and their application is expanding into various fields including electrochemistry due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, wide electrochemical potential window and so on. These features make ionic liquids become an alternative solution for electrodeposition of metals that cannot be electroplated in aqueous electrolytes. In this review, we classify investigated metals into three categories, which are light (Li, Mg), refractory (Ti, Ta) and noble (Pd, Pt, Au) metals, rather than covering the exhaustive list of metals and try to update the recent development in this area. In electrodeposition of light metals, granular fine Li particles were successfully obtained while the passivation of electrodeposited Mg layers is an obstacle to reversible deposition-dissolution process of Mg. In the case of refractory metals, the quality of Ta and Ti deposit particles was effectively improved with addition of LiF and pyrrole, respectively. In noble metal category, EMIM TFSA ionic liquid as an electrolyte for Au electrodeposition was proven to be effective and BMP TFSA ionic liquid developed a smooth Pd deposit. Pt nanoparticle production from ionic liquid droplet in aqueous solution can be cost-effective and display an excellent electrocatalytic activity.