DOI QR코드

DOI QR Code

Electrodeposition of Some Selective Metals Belonging to Light, Refractory and Noble Metals from Ionic Liquid Electrolytes

  • Dilasari, Bonita (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Kwon, Kyung-Jung (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Lee, Churl-Kyoung (School of Advanced Materials & Systems Engineering, Kumoh National Institute of Technology) ;
  • Kim, Han-Su (Department of Energy Engineering, Hanyang University)
  • Received : 2012.07.23
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

Ionic liquids are steadily attracting interests throughout a recent decade and their application is expanding into various fields including electrochemistry due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, wide electrochemical potential window and so on. These features make ionic liquids become an alternative solution for electrodeposition of metals that cannot be electroplated in aqueous electrolytes. In this review, we classify investigated metals into three categories, which are light (Li, Mg), refractory (Ti, Ta) and noble (Pd, Pt, Au) metals, rather than covering the exhaustive list of metals and try to update the recent development in this area. In electrodeposition of light metals, granular fine Li particles were successfully obtained while the passivation of electrodeposited Mg layers is an obstacle to reversible deposition-dissolution process of Mg. In the case of refractory metals, the quality of Ta and Ti deposit particles was effectively improved with addition of LiF and pyrrole, respectively. In noble metal category, EMIM TFSA ionic liquid as an electrolyte for Au electrodeposition was proven to be effective and BMP TFSA ionic liquid developed a smooth Pd deposit. Pt nanoparticle production from ionic liquid droplet in aqueous solution can be cost-effective and display an excellent electrocatalytic activity.

Keywords

References

  1. F. Andres, 'Ionic liquids: solvents for the electrodeposition of metals and semiconductors' Chem. Phys. Chem., 3, 144 (2002). https://doi.org/10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
  2. A. P. Abbott and K.J. McKenzie, 'Application of ionic liquids to the electrodeposition of metals' Phys. Chem. Chem. Phys., 8, 4265 (2006). https://doi.org/10.1039/b607329h
  3. W. Simka, D. Puszczyk and G. Nawrat, 'Electrodeposition of metals from non-aqueous solutions' Electrochim. Acta, 54, 5307 (2009). https://doi.org/10.1016/j.electacta.2009.04.028
  4. D. Aurbach, E. Zinigrad, Y. Cohen and H. Teller, 'A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions' Solid State Ionics, 148, 405 (2002). https://doi.org/10.1016/S0167-2738(02)00080-2
  5. H. Sano, H. Sakaebe and H. Matsumoto, 'Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based electrolyte' J. Power Sources, 196, 6663 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.023
  6. H. Ota, Y. Sakata, Y. Otake, K. Shima, M. Ue and J. Yamaki, 'Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte' J. Electrochem. Soc., 151, A1778 (2004). https://doi.org/10.1149/1.1798411
  7. Y. N. NuLi, J. Yang and P. Wang, 'Electrodeposition of magnesium film from BMIM $BF_{4}$ ionic liquid' Appl. Surf. Sci., 252, 8086 (2006). https://doi.org/10.1016/j.apsusc.2005.10.022
  8. P. Wang, Y. N. NuLi, J. Yang and Z. Feng, 'Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium' Surf. Coat. Tech., 201, 3783 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.020
  9. N. Amir, Y. Vestfrid, O. Chusid, Y. Gofer and D. Aurbach, 'Progress in nonaqueous magnesium electrochemistry' J. Power Sources, 174, 1234 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.206
  10. O. Shimamura, N. Yoshimoto, M. Matsumoto, M. Egashia and M. Morita, 'Electrochemical co-deposition of magnesium with lithium from quaternary ammoniumbased ionic liquid' J. Power Sources, 196, 1586 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.060
  11. S. Zein El Abedin, H. K. Farag, E. M. Moustafa, U. Welz-Biermann and F. Endres, 'Electroreduction of tantalum fluoride in a room temperature ionic liquid at variable temperatures' Phys. Chem. Chem. Phys., 7, 2333 (2005). https://doi.org/10.1039/b502789f
  12. S. Zein El Abedin, U. Welz-Biermann and F. Endres, 'A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy' Electrochem. Commun., 7, 941 (2005). https://doi.org/10.1016/j.elecom.2005.06.007
  13. N. Borisenko, A. Ispas, E. Zschippang, Q. Liu, S. Zein El Abedin, A. Bund and F. Endres, 'In situ STM and EQCM studies of tantalum electrodeposition from $TaF_{5}$ in the air- and water-stable ionic liquid 1-butyl-1- methylpyrrolidinium bis(trifluoromethylsulfonyl)amide' Electrochim. Acta, 54, 1519 (2009). https://doi.org/10.1016/j.electacta.2008.09.042
  14. A. Ispas, B. Adolphi, A. Bund and F. Endres, 'On the electrodeposition of tantalum from three different ionic liquids with the bis(trifluoromethyl sulfonyl)amide anion' Phys. Chem. Chem. Phys., 12, 1793 (2010). https://doi.org/10.1039/b922071m
  15. I. Mukhopadhyay, C. L. Aravinda, D. Borissov and W. Freyland, 'Electrodeposition of Ti from TiCl4in the ionic liquid l-methyl-3-butyl-imidazolium bis(trifluoromethylsulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy' Electrochim. Acta, 50, 1275 (2005). https://doi.org/10.1016/j.electacta.2004.07.052
  16. F. Endres, S. Zein El Abedin, A. Y. Saad, E. M. Moustafa, N. Borissenko, W. E. Price, G. G. Wallace, D. R. MacFarlane, P. J. Newman and A. Bund, 'On the electrodeposition of titanium in ionic liquids' Phys. Chem. Chem. Phys., 10, 2189 (2008). https://doi.org/10.1039/b800353j
  17. J. Ding, J. Wu, D. MacFarlane, W. E. Price and G. Wallace, 'Induction of titanium reduction using pyrrole and polypyrrole in the ionic liquid ethylmethyl- imidazolium bis(trifluoromethanesulphonyl) amide' Electrochem. Commun., 10, 217 (2008). https://doi.org/10.1016/j.elecom.2007.11.021
  18. X.-Y. Zhang, Y.-X. Hua, C.-Y. Xu, Q.-B. Zhang, X.-B. Cong and N. Xu, 'Direct electrochemical reduction of titanium dioxide in Lewis basic AlCl3-1-butyl-3- methylimidizolium ionic liquid' Electrochim. Acta, 56, 8530 (2011). https://doi.org/10.1016/j.electacta.2011.07.037
  19. B. Bozzini, E. Tondo, A. Bund, A. Ispas and C. Mele, 'Electrodeposition of Au from [EMIm][TFSA] roomtemperature ionic liquid: An electrochemical and Surface- Enhanced Raman Spectroscopy study' J. Electroanal. Chem. 651, 1 (2011). https://doi.org/10.1016/j.jelechem.2010.11.015
  20. B. Bozzini, L. D'Urzo and C. Mele, 'Electrodeposition of Cu from cyanoalkaline solutions in the presence of CPC and PEG' J. Electrochem. Soc., 152, C255 (2005). https://doi.org/10.1149/1.1869976
  21. B. Bozzini and A. Fanigliulo, 'Raman spectroscopy of organic species incorporated into electrodeposited gold layers' Trans. Inst. Met. Finish., 80, 25 (2002). https://doi.org/10.1080/00202967.2002.11871423
  22. B. Bozzini, B. Busson, C. Humbert, C. Mele, P. Raffa and A. Tadjeddine, 'Investigation of Au electrodeposition from [BMP][TFSA] room-temperature ionic liquid containing $K[Au(CN)_{2}]$ by in situ two-dimensional sum frequency generation spectroscopy' J. Electroanal. Chem., 661, 20 (2011). https://doi.org/10.1016/j.jelechem.2011.07.004
  23. A.I. de Sá, S. Eugénio, S. Quaresma, C.M. Rangel and R. Vilar, 'Electrodeposition of gold thin films from 1- butyl-1-methylpyrrolidinium dicyanamide $Au^{3+}$ Solutions' Thin Solid Films, 519, 6278 (2011). https://doi.org/10.1016/j.tsf.2011.03.135
  24. C-C. Tai, F-Y. Su and I-W. Sun, 'Electrodeposition of palladium-silver in a Lewis basic1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid' Electrochim. Acta, 50, 5504 (2005). https://doi.org/10.1016/j.electacta.2005.03.045
  25. D. R. MacFarlane, J. Sun, J. Golding, P. Meakin and M. Forsyth, 'High conductivity molten salts based on the imide ion' Electrochim. Acta, 45, 1271 (2000). https://doi.org/10.1016/S0013-4686(99)00331-X
  26. Y. Bando, Y. Katayama and T. Miura, 'Electrodeposition of palladium in a hydrophobic1-n-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide room-temperature ionic liquid' Electrochim. Acta, 53, 87 (2007). https://doi.org/10.1016/j.electacta.2007.02.074
  27. P. He, H. Liu, Z. Li and J. Li, 'Electrodeposition of platinum in room-temperature ionic liquids and electrocatalytic effect on electro-oxidation of methanol' J. Electrochem. Soc., 152, E146 (2005). https://doi.org/10.1149/1.1870754
  28. P. Yu, J. Yan, J. Zhang and L. Mao, 'Cost-effective electrodeposition of platinum nanoparticles with ionic liquid droplet confined onto electrode surface as micromedia' Electrochem. Commun., 9, 1139 (2007). https://doi.org/10.1016/j.elecom.2007.01.022
  29. J. A. Widegren, A. Laesecke and J.W. Magee, 'The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids' Chem. Commun., 1610 (2005).