• Title/Summary/Keyword: liquid crystallinity

Search Result 102, Processing Time 0.019 seconds

Alkali activated ceramic waste with or without two different calcium sources

  • Zedan, Sayieda R.;Mohamed, Maha R.;Ahmed, Doaa A.;Mohammed, Aya H.
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.133-144
    • /
    • 2015
  • The aim of this investigation is to prepare geopolymer resin by alkali activation of ceramic waste (AACW) with different sodium hydroxide (NaOH) and liquid sodium silicate (LSS) concentrations. In order to prepare geopolymer cement, AACW was replaced by 10 and 30 % by weight (wt.,) of concrete waste (CoW) as well as 10 and 30 wt., % ground granulated blast-furnace slag (GGBFS). The results showed that, the compressive strength of AACW increases with the increase of activator content up to 15:15 wt., % NaOH: LSS. All AACW hardened specimens activated by 3:3 (MC6), 6:6 (MC12), 12:12 (MC24) and 15:15 wt., % (MC30) NaOH: LSS destroyed when cured in water for 24h. The MC18 mix showed higher resistivity to water curing. The results also showed that, the replacement of AACW containing 9:9 wt., % NaOH: LSS (MC18) by 10 (MCCo10) and 30 (MCCo30) wt., % CoWdecreased the compressive strength at all ages of curing. In contrast, the MCCo10 mix showed the lower chemically combined water content compared to MC18 mix. The MCCo30 mix showed the higher chemically combined water content compared to MC18 and MCCo10 mixes. The compressive strength and chemically combined water of all AACWmixes containing GGBFS (MCS10 and MCS30) were higher than those of AACWwith no GGBFS (MC18). As the amount of GGBFS content increases the chemically combined water increases. The x-ray diffraction (XRD) proved that as the amount of CoWcontent increases, the degree of crystallinity increases. Conversely, the replacement of AACW by GGBFS leads to increase the amorphiticity character. The infrared spectroscopy (FTIR) confirms the higher reactivity of GGBFS compared to CoW as a result of successive hydration products formation, enhancing the compaction of microstructure as observed in scanning electron microscopy (SEM).

Formation of CVD-Cu Thin Films on Polyimide Substrate (Polyimide 기판을 이용한 CVD-Cu 박막 형성기술)

  • 조남인;임종설;설용태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • Copper thin films have been prepared by a metal organic chemical vapor deposition (MOCVD) technology on polyimide and TiN substrates. The Cu-MOCVD technology has advantages of the high deposition rate and the good step coverage compared with the conventional physical vapor deposition (PVD) technology in several industrial applications. The Cu films have been deposited with varying the experimental conditions of substrate temperatures and copper source vapor pressures. The films were annealed in a vacuum condition after the deposition, and the annealing effect on the electrical properties of the films was measured. The crystallinity and the microstructures of the films were observed by scanning electron microscopy (SEM), and the electrical resistivity was measured by 4-point probe. In the case of the Cu deposition on TiN substrate, the best electrical property of the films was measured for the samples prepared at 18$0^{\circ}C$. Very high deposition rate of the Cu film up to 250 nm/min was obtained on the polyimide substrate when the mixture of liquid and vapour precursor was used.

  • PDF

Effect of BaF2 as a Flux in Solid State Synthesis of Y3Al5O12:Ce3+ (고상법을 이용한 Y3Al5O12:Ce3+의 제조에서 BaF2가 미치는 영향)

  • Won, Hyung-Seok;Hayk, Nersisyan;Won, Chang-Whan;Won, Hyung-Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.604-610
    • /
    • 2011
  • The effect of $BaF_2$ flux in $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) formation was investigated. Phase transformation of $Y_3Al_5O_{12}$(YAG) was characterized by using XRD, SEM, and TEM-EDS, and it was revealed that the sequential formation of the $Y_4Al_2O_9$(YAM), $YAlO_3$(YAP) and $Y_3Al_5O_{12}$(YAG) in the temperature range of 1000-1500$^{\circ}C$. Single phase of YAG was revealed from 1300$^{\circ}C$. In order to find out the effect of $BaF_2$ flux, three modeling experiments between starting materials (1.5$Al_2O_3$-2.5$Y_2O_3$, $Y_2O_3$-$BaF_2$, and $Al_2O_3$-$BaF_2$) were done. These modeling experiments showed that the nucleation process occurs via the dissolution-precipitation mechanism, whereas the grain growth process is controlled via the liquid-phase diffusion route. YAG:Ce phosphor particles prepared using a proposed technique exhibit a spherical shape, high crystallinity, and an emission intensity. According to the experimental results conducted in this investigation, 5% of $BaF_2$ was the best concentration for physical, chemical and optical properties of $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) that is approximately 10-15% greater than that of commercial phosphor powder.

Characterization of LLDPE/CaCO3 Composite Drawn Film (연신된 LLDPE/CaCO3 composite film의 특성분석)

  • Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Han, Myung Dong;Seo, Jang Min;Seo, Min Jeong;Yang, Seong Baek;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.68-75
    • /
    • 2022
  • The breathable film refers to a high-functional film that allows gas and water vapor to pass through very fine and sophisticated pores but not liquid. In this research, the breathable film was prepared based on linear low-density polyethylene (LLDPE) and CaCO3 particles by extrude method. The LLDPE composite film containing CaCO3 particles had excellent mechanical properties and functionalties. The drawing is a technologically simple and excellent method for improving the mechanical properties of composite films. In this work, the effects of draw ratio on morphology, crystallinity, pore size distribution, mechanical properties, and water vapor permeability of the films were examined. The results revealed that both surface morphology and breathability were affected by the influence of chain orientation and crystal growth with increasing the draw ratio. The mechanical properties were improved with increasing the draw ratio.

Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent (Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구)

  • Lee, Chan;Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.127-132
    • /
    • 2019
  • In this study, barium strontium titanate (BSTO) with high dielectric perovskite structure was synthesized by liquid-solid solution synthesis and the surface was modified using trimethylsilyl chloride (TMCS) as a silylation agent. Silylation surface modification is a method of reacting -OH ligand on the surface of BSTO nanoparticles with Cl in TMCS to generate HCl and replacing the ligand on the surface of nanoparticles with -Si, -CH3. Silylation was optimized by varying the concentration of TMCS, and the structure of the silicon network was confirmed by Fourier-transform infrared spectroscopy. In addition, the crystallinity of BSTO nanoparticles was confirmed by X-ray diffractometer and the size of the nanoparticles was calculated using Scherrer equation. The field emission scanning electron microscopic image observed the change of the surface-modified BSTO particle size, and the contact angle measurement confirmed the hydrophobic property of the contact angle of 120.9° in the optimized nanoparticles. Finally, the surface-modified BSTO dispersion experiment in de-ionized water confirmed the hydrophobic degree of the nanoparticles.

Comparison of the Properties of Almotriptan PVA Hydrogel Depending on the Ratio of PEG and Confirmation of Potential as Transdermal Formulation (PEG의 함량에 따른 알모트립탄 PVA 하이드로겔의 성질비교와 경피흡수형 제제로서의 가능성 확인)

  • Kang, Se Mi;Jung, Young Jin;Lee, Jae Ho
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.437-446
    • /
    • 2014
  • Problems appear when triptans are taken orally. For example, the bioavailability of triptan is reduced by the digestive system, and the drug level in the blood reduces rapidly over time; there is also a possibility of gastrointestinal disorder. To improve side effects, a transdermal patch has been prepared in hydrogel form. The polymer matrix that makes up the hydrogel uses PVA; PEG is used as an additive to induce inter/intra hydrogen bonding of the PVA and almotriptan drug is added. In addition, to accelerate micro-phase separation between PVA chains, liquid nitrogen is used. In FT-IR analysis, the absorption bands of PVA, PEG, and almotriptan were found. The degree of crystallinity, the water uptake ability and tensile strength were increased with increasing PEG content. In drug release tests, the amount of drug released increased depending on the PEG content. In this study, hydrogels with 10 wt% PEG showed better performance in drug release. Approximately 60% of the total drug amount was released in 2 hr, and the drug continued to release for 1 day. Thus, the prepared hydrogel patch is suitable as a transdermal formulation for the second dose administration of triptans to patients who require recurrent migraine treatment within 24 hr after the first administration.

Characteristics of the Leaf Fiber Plants Cultivated in Korea (국내 재배 엽맥섬유의 특성에 관한 연구)

  • Lee, Hye-Ja;Kim, Nam-Eun;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.5
    • /
    • pp.711-720
    • /
    • 2009
  • Leaf fibers have many good properties; they are strong, long, cheap, abundant and bio-degradable. Since they, however, contain a great quantity of non-cellulose components, they have been used for the materials of mats, ropes, bags and nets rather than those of clothing. In this study, we investigated the characteristics of leaf fibers in order to promote the use of leaf fibers for the materials of clothing as well as develop the high value-added textile fibers. Leaf fiber plants including New Zealand Flax, Henequen and Banana plant, which have various nature and shape, were used. New Zealand Flax and Henequen leaves were cut from lower part of plants. Banana leaves and pseudo-stems were peeled and cut from the stem of Banana plants. First, the thin outer skins like film of leaves, veins and stems were removed before retting. The chemical retting had been processed for 1hour, at 100 in 0.4% $H_2SO_4$ aqueous solution(liquid ratio 50:1). Then, the retted leaf fibers had been soaked for 1hour, at room temperature in 0.5% NaClO solution(v/v) to remove the miscellaneous materials. We investigated the physical characteristics of three leaf fibers including the transversal and longitudinal morphology, the contents(%) of pectin, lignin and hemicellulose, the length and diameter of fibers, the tensile strength of the fiber bundles, and the fiber crystallinity and the moisture regain(%). The lengths of fiber from three leaf fibers were similar to their leaf lengths. The fiber bundles were composed of the cellulose paralleled to the fiber axis and the non-cellulose intersecting at right angle with the fiber axis. The diameters of New Zealand Flax, Henequen and Banana fibers were $25.13{\mu}m$, $18.16{\mu}m$ and $14.01{\mu}m$, respectively and their tensile strengths were 19.40 Mpa, 32.16 Mpa and 8.45 Mpa, respective. The non-cellulose contents of three leaf fibers were relatively as high as 40%. If the non-cellulose contents of leaf fibers might be controlled, leaf fibers could be used for the materials of textile fiber, non-wovens and Korean traditional paper, Hanjee.

Enhanced Fiber Structure of Carbonized Cellulose by Purification (정제 과정에 의한 탄화 셀룰로오스 섬유 구조의 증가)

  • Kim, Bong Gyun;Sohng, Jae Kyung;Liou, KwnagKyoung;Lee, Hei Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.257-261
    • /
    • 2005
  • The microbial cellulose is in a form of three dimensional net structures that consists of 20~50 nm fibrils. It possesses high crystallinity and orientation. It is difficult to synthesize large amount of fibrous carbon nanomaterials by the carbonization process using raw materials such as polyacrylonitrile (PAN), regenerated cellulose (Rayon) and pitch. However, it seems possible thru the application of microbial cellulose as raw material. The application of such cellulose can be further extended to the synthesis of highly oriented graphite fiber. Out of three different cellulose-producing strains, G. xylinus ATCC11142 was chosen as it has the highest productivity (0.066 g dried cellulose/15 mL medium). Tar is often produced during the carbonization of cellulose that limits the formation fibrous structure of the carbonized sample. In order to solve such a problem, pre-studied purification methods of carbon nanotube such as liquid phase oxidation, gas phase oxidation and filtration associated with ultrasonication were applied at the carbonized cellulose. In that case. only by filtration associated with ultrasonication, improved the formation of fiber structure of the carbonized cellulose.

Synthesis and Characterization of Al-containing Titanium Silicalite-1 Catalysts (알루미늄 함유 티타늄 실리카라이트-1 촉매의 합성 및 특성 연구)

  • Ko, Yong Sig;Hong, Suk Bong;Kim, Geon Joong;Ahn, Wha Seung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.639-647
    • /
    • 1998
  • Al-containing titanium silicalite-1 ([Al]-TS-1) catalyst was prepared hydrothermally, and the effects of synthesis parameters such as silica/alumina sources, $SiO_2/TiO_2$ ratio, and aging treatment were investigated. The structure, crystal size, and shape were examined by XRD and SEM, and the extent of titanium incorporation into the zeolite framework was examined using UV-vis DRS spectroscopy. For [Al]-TS-1 catalyst preparation, aging of ca. 24h was essential, and the faster crystallization rates were achieved with Cab-O-Sil than with Ludox or TEOS as a silica source. In addition, the higher crystallinity and faster crystallization rate were obtained using sodium aluminate as an aluminum source. 2-butanol oxidation using $H_2O_2$ as an oxidant was carried out to confirm the redox property of the [Al]-TS-1. Acid sites catalyzed toluene alkylation study indicated that lattice titanium species in [Al]-TS-1 weakened the acid strength, and the para-ethyltoluene selectivity was enhanced as a results.

  • PDF

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.