• Title/Summary/Keyword: liquid alloy

Search Result 398, Processing Time 0.024 seconds

Modeling of a Confinement Effect in Laser Shock Peening on Titanium Alloy (티타늄 합금에 대한 레이저 쇼크 피닝에서 컨파인먼트에 따른 피닝 효과 모델링)

  • Lee, Wooram;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.680-685
    • /
    • 2013
  • In this study, the effect of laser shock peening on a titanium alloy was modeled using different confinements. Both liquid and solid confinement could be applied to laser shock peening, and solid confinement provided a dry laser shock peening process, which has the advantage of a corrosion-free effect. When a different confinement was applied to laser shock peening, a different peening effect would be expected. In our study, the peening effect was numerically modeled and simulated. The main effect of different confinements was a change in the impedances required to confine a shock wave from a plasma. The impedances were assumed with respect to different materials. Johnson-Cook's plastic deformation modeling was applied to the simulation. The strains and residual stresses were calculated to evaluate the confinement effects. When solid confinement was used, the residual stress increased by 60-85%, compared to the case of liquid confinement. However, the depth of the residual stress was slightly deeper. The simulated results could be applied to estimate the peening effect when a different confinement was used in the laser shock peening process.

The Role of Be Addition on Glass Forming Ability and Plasticity of Zr-Cu-Al Ternary Amorphous Alloy System (Zr-Cu-Al 3원계 비정질 합금의 형성능 및 소성에 미치는 Be의 역할)

  • Shin, Sang-Soo;Lim, Kyoung-Mook;Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.30 no.2
    • /
    • pp.83-88
    • /
    • 2010
  • Bulk amorphous alloys with reasonable glass forming ability and large plasticity were found in Zr-Cu-Al alloys. Further increase in the GFA and the ductility is expected by appropriately choosing a fourth element. In this study, we select Be as the fourth element and added to the Zr-Cu-Al system to synthesize $(Zr_{57.4}Cu_{38.1}Al_{4.5})_{100-x}Be_x$(x=0~16) alloys and the glass forming ability and the plasticity were measured. With Be addition, the supercooled liquid region (${\Delta}T_x$), the plasticity and GFA as high as $134^{\circ}C$, 20.5%, 7 mm, respectively, can be obtained. Herein, we present the effect of Be addition on the variations of various mechanical properties and thermal characteristics of the $(Zr_{57.4}Cu_{38.1}Al_{4.5})_{100-x}Be_x$ alloys.

Development of Thixoextrusion Process for Light Alloys - Part 1. Microstructural Control of Light Alloys for Thixoextrusion (경량합금 반용융 압출 기술 개발 - Part 1. 반융용 압출을 위한 조직제어)

  • Kim, Shae-K.;Yoon, Young-Ok;Jang, Dong-In;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.211-216
    • /
    • 2006
  • The study for thixoextrusion process of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy was carried out with respect to reheating rate, isothermal holding temperature and time with an emphasis to the effect of homogenization on thixotropic micro-structures during the partial remelting, especially in the low liquid fraction ($f_L<0.2$). The liquid fraction and average grain size with respect to reheating profile such as reheating rate, isothermal holding temperature and time were almost uniform. It is considered very useful for thixoextrusion in terms of process control such as billet temperature control and actual extrusion time. Micro-structural controls of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy before and after homogenization were available and thixotropic microstructures were obtained in both specimens.

Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region (과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발)

  • 옥명렬;서진유;홍경태
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2004
  • Recently, various bulk metallic glasses (BMG's) having good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. By using the viscous flow, the very low pressure is needed to deform the materials. In this study, we investigated the structural transition and deformation behavior of Vitreloy 1 (Zr/sub 41.2/Ti/sub 13.8/Cu/sub 12.5/Ni/sub 10/Be/sub 22.5/) using TMA and DSC. We applied the results to the micro forming process. The forming condition was chosen based on the viscosity data from TMA, and Si wafer with micro patterns on the surface was used as a forming die. The deformed surface was analyzed by SEM and 3D Surface Profiling System. The alloy showed good replication of the patterns. Quantitative measurement of roughness was useful to evaluate the replication. Surface condition of the deformed surface was determined by the initial surface condition.

The Effect of P and Mo for Thermal and Chemical Properties of Fe-PC-B-Al-Mo Amorphous Alloys (Fe-P-C-B-Al-Mo계 비정질합금의 열적.화학적 성질에 미치는 P 및 Mo의 영향)

  • Gook, Jin-Seon;Chon, Woo-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.76-81
    • /
    • 2002
  • The melt-spun amorphous $Fe_{77-X}P_{13}C_4B_4Al_2Mo_X$(x=4~10) and $Fe_{82-X}P_XC_4B_4Al_2Mo_8$(x=9~15) alloys were found to exhibit a large supercooled liquid region(${\Delta}T_x$) exceeding 40 K before crystallization. The largest ${\Delta}T_x$ for the glassy alloys containing Mo reaches as large as 65 K for the $Fe_{69}P_{13}C_4B_4Al_2Mo_8$ alloy. The corrosion behavior of the amorphous $Fe_{77-X}P_{13}C_4B_4Al_2Mo_X$(x=4~15) and $Fe_(82-X)P_XC_4B_4Al_2Mo_8$ (x=9~17) alloys were examined by electrochemical measurements in 9M $H_2SO_4$ solution at 303 K. The addition of Mo(or P) for replacing some portion of Fe is effective in improving the corrosion resistance of the investigated Fe-based glassy alloys. They are spontaneously passivated and have a wide passive region with low passive current density.

Toughness and Damping Properties of Nanostructured Ni-Al Alloys Produced by Mechanical Alloying Methods (기계적합금화법에 의해 제조된 NiAl 나노금속간화합물 소결체의 인성 및 제진특성)

  • 안인섭;김형범;김영도;김지순
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2000
  • NiAl alloy powders were prepared by mechanical alloying method and bulk specimens were produced using hot isostatic pressing techniques. This study focused on the transformation behavior and properties of Ni-Al mechanically alloyed powders and bulk alloys. Transformation behavior was investigated by differential scanning calorimeter (DSC), XRD and TEM. Particle size distribution and microstructures of mechanically alloyed powders were studied by particle size analyzer and scanning electron microscope (SEM). After 10 hours milling, XRB peak broadening appeared at the alloyed powders with compositions of Ni-36at%Al to 40at%Al. The NiAl and $Ni_3Al$ intermetallic compounds were formed after water quenching of solution treated powders and bulk samples at $1200^{\circ}C$, but the martensite phase was observed after liquid nitrogen quenching of solution treated powders. However, the formation of $Ni_3Al$ intermetallic compounds were not restricted by fast quenching into liquid nitrogen. It is considered to be caused by fast diffusion of atoms for the formation of stable $\beta$(NiAl) phase and $Ni_3Al$ due to nano sized grains during quenching. Amounts of martensite phase increased as the composition of aluminium component decreased in the Ni-Al alloy, which resulted in the increasing damping properties.

  • PDF

Solid Particle Behavior Analysis in Rheology Material by Fortran 90 (레오로지 소재의 고상입자 변형거동 해석)

  • Kwon, K.Y.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.234-237
    • /
    • 2008
  • It was reported that the semi-solid forming process has many advantages over the conventional forming process, such as a long die life, good mechanical properties and energy savings. It is very important, however, to control liquid segregation to gain mechanical property improvement of materials. During forming process, Rheology material has complex characteristics, thixotropic behavior. Also, difference of velocity between solid and liquid in the semi-solid state material makes a liquid segregation and specific stress variation. Therefore, it is difficult for a numerical simulation of the rheology Process to be Performed. General Plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. The behavior and stress of solid particle in the rheology material during forging process is affected by viscosity, temperature and solid fraction. In this study, compression experiments of aluminum alloy were performed under each other tool shape. In addition, the dynamics behavior compare with Okano equation to Power law model which is viscosity equation.

  • PDF

Photoreflectance of A $I_x$Ga${1-x}$As(x.<=.0.15) grown by liquid-phase epitaxy (Liquid-phase epitaxy로 성장시킨 A $I_x$Ga${1-x}$As(x.<=.0.15)의 photoreflectance)

  • 배인호;김인수;이철욱;최현태;김말문;김상기
    • Electrical & Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.300-305
    • /
    • 1994
  • We determined the alloy composition of the liquid-phase epitaxy(LPE) grown $Al_{x}$G $a_{1-x}$ As by the photoreflectance(PR), and observed the variation of PR signal by changing the condition of annealing and thickness of epilayer. As the measuring temperature was decreased, the broadening parameter was decreased, and the amplitude of PR signal was increased. When the temperature of annealing was increased, the surface carrier concentration was decreased and then the shape and amplitude of PR signal were affected by the surface electric field. The structure change was observed when the specimen was annealed for long time at a high temperature. We found that the surface electric field increased when the thickness of epilayer was decreased by etching, because the band bending was increased by the decreased of the width of depletion layer....

  • PDF

Electrochemical extraction of uranium on the gallium and cadmium reactive electrodes in molten salt

  • Valeri Smolenski;Alena Novoselova
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • The electrochemical extraction of uranium in ternary low melting LiCl-KCl-CsCl eutectic on inert and reactive electrodes via different electrochemical techniques was investigated. It was established that the electrochemical reduction process of U(III) ions on the inert W electrode was irreversible and proceeded in one stage. On reactive liquid Ga and liquid Cd electrodes the reduction of uranium ions took place with the considerable depolarization with the formation of UGa2, UGa3 and UCd11 intermetallic compounds. Thermodynamic characteristics of uranium compounds and alloys were calculated. The conditions for the extraction of uranium from the electrolyte in the form of alloys on both liquid reactive electrodes via potentiostatic electrolysis were found.

Transient Liquid Phase Bonding of Ni-Cr Heat Resisted Cast Steel (Ni-Cr계 내열주강의 천이액상 접합)

  • 권영순;신철균;김현식;김환태;김지순;석명진
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and $Al_2O_3$ powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, $Al_2O_3$ particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.