The Role of Be Addition on Glass Forming Ability and Plasticity of Zr-Cu-Al Ternary Amorphous Alloy System

Zr-Cu-Al 3원계 비정질 합금의 형성능 및 소성에 미치는 Be의 역할

  • Shin, Sang-Soo (Division for Dongnam Area Technology Service, Korea Institute of Industrial Technology) ;
  • Lim, Kyoung-Mook (Division for Dongnam Area Technology Service, Korea Institute of Industrial Technology) ;
  • Kim, Eok-Soo (Division for Dongnam Area Technology Service, Korea Institute of Industrial Technology)
  • 신상수 (한국생산기술연구원 동남권기술지원센터) ;
  • 임경묵 (한국생산기술연구원 동남권기술지원센터) ;
  • 김억수 (한국생산기술연구원 동남권기술지원센터)
  • Received : 2010.03.30
  • Accepted : 2010.04.15
  • Published : 2010.04.30

Abstract

Bulk amorphous alloys with reasonable glass forming ability and large plasticity were found in Zr-Cu-Al alloys. Further increase in the GFA and the ductility is expected by appropriately choosing a fourth element. In this study, we select Be as the fourth element and added to the Zr-Cu-Al system to synthesize $(Zr_{57.4}Cu_{38.1}Al_{4.5})_{100-x}Be_x$(x=0~16) alloys and the glass forming ability and the plasticity were measured. With Be addition, the supercooled liquid region (${\Delta}T_x$), the plasticity and GFA as high as $134^{\circ}C$, 20.5%, 7 mm, respectively, can be obtained. Herein, we present the effect of Be addition on the variations of various mechanical properties and thermal characteristics of the $(Zr_{57.4}Cu_{38.1}Al_{4.5})_{100-x}Be_x$ alloys.

Keywords

References

  1. A. Inoue, N. Nishiyama and T. Matsuda, Mater. Trans. JIM, "Preparation of Bulk Glassy $Pd_{40}Ni_{10}Cu_{30}P_{20}$ Alloy of 40 mm in Diameter by Water Quenching", 37 (1996) 181-184 https://doi.org/10.2320/matertrans1989.37.181
  2. E. S. Park, H. G. Kang, W. T. Kim and D. H. Kim, J. Non- Cryst. Solids, "The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys", 297 (2001) 154- 160
  3. A. Inoue, T. Zhang and A. Takeuchi, Appl. Phys. Lett., "Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM= IV-VIII group transition metal) system" 71 (1997) 464 https://doi.org/10.1063/1.119580
  4. Chun-Li Dai, Hua Guo, Yong Shen, Yi Li, En Ma, Jian Xu, Scripta Mater., "A new centimeter-diameter Cu-based bulk metallic glass" 54 (2006) 1403-1408 https://doi.org/10.1016/j.scriptamat.2005.11.077
  5. D. Xu, B. Lohwongwatana, G. Duan, W. L. Jhonson, and C. Garland, Acta Mater., "Bulk metallic glass formation in binary Cu-rich alloy series$Cu100_{x}Zr_{x}$ (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk $Cu_{64}Zr_{36}$ glass" 52 (2004) 2621-2624 https://doi.org/10.1016/j.actamat.2004.02.009
  6. C. L. Qin , W. Zhang, K. Asami, H. Kimura, X. M. Wang, A. Inoue, Acta Mater., "A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties" 54 (2006) 3713-3719 https://doi.org/10.1016/j.actamat.2006.04.005
  7. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., "High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems" 49 (2001) 2645-2652 https://doi.org/10.1016/S1359-6454(01)00181-1
  8. Das J, Tang M. B. Kim K. B, Theissmann R, Baier F, Wang WH, Eckert, J. Phys. Rev. Lett.," "Work-Hardenable" Ductile Bulk Metallic Glass" 94 (2005) 205501 https://doi.org/10.1103/PhysRevLett.94.205501
  9. K. H. Kim, S. W. Lee, J. P. Ahn, E. Fleury, Y. C. Kim, and J. C. Lee, Met. Mater. -Int., "A Cu-based Amorphous Alloy with a Simultaneous Improvement in Its Glass Forming Ability and Plasticity" 13 (2007) 21-25 https://doi.org/10.1007/BF03027818
  10. D. Wang, H. Tan, and Y. Li, Acta Mater., "Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system - A metallographic way to pinpoint the best glass forming alloys" 53 (2005) 2969-2979 https://doi.org/10.1016/j.actamat.2005.03.012
  11. D. S. Sung, O. J. Kwon, E. Fleury, K. B. Kim, J. C. Lee and D. H. Kim, Met. Mater. Inter., "Enhancement of the Glass Forming Ability of Cu-Zr-Al Alloys by Ag Addition" 10 (2004) 575-580 https://doi.org/10.1007/BF03027421
  12. A. L. Greer, Nature. Materials Science - "Confusion by Design" 366 (1993) 303-304 https://doi.org/10.1038/366303a0
  13. A. Inoue, Progress in Mater. Sci., "Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems" 43 (1998) 365-520 https://doi.org/10.1016/S0079-6425(98)00005-X
  14. T. Egami, Mater. Sci. Eng. A, "Universal criterion for metallic glass formation" 226-228 (1997) 261-267 https://doi.org/10.1016/S0921-5093(97)80041-X
  15. J. C. Oh, T. Ohkubo, Y. C. Kim, E. Fleury, and K. Hono, Scripta Mater., "Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass" 53 (2005) 165-169 https://doi.org/10.1016/j.scriptamat.2005.03.046
  16. Y. Yokoyama, J. Non-Cryst. Solids, "Ductility improvement of Zr-Cu-Ni-Al glassy alloy" 316 (2003) 104-113 https://doi.org/10.1016/S0022-3093(02)01942-7
  17. K. C. Thompson-Russell and J. W. Edington, "Electron Microscope Specimen Preparation Techniques in Materials Science", PHILIPS (1977).
  18. H. Yinnon, D. R. Uhlmann, J. Non-Cryst. Solids, "Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory" 54 (1983) 253-275 https://doi.org/10.1016/0022-3093(83)90069-8
  19. Z. P. Lu and C. T. Liu, Phys. Rev. Lett., "Glass Formation Criterion for Various Glass-Forming Systems" 91 (2003) 115505 https://doi.org/10.1103/PhysRevLett.91.115505
  20. K. B. Kim, J. Das, F. Baier, M. B. Tang, W. H. Wang, and J. Eckert, Appl. Phys. Lett., "Heterogeneity of a $Cu_{47.5}Zr_{47.5}Al_5$ bulk metallic glass" 88 (2006) 051911 https://doi.org/10.1063/1.2171472
  21. S. W. Lee, M. Y. Huh, E. Fleury, and J. C. Lee, Acta Mater., "Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys" 54 (2006) 349-355 https://doi.org/10.1016/j.actamat.2005.09.007
  22. J. C. Lee, Y. C. Kim, J. P Ahn ,and H. S. Kim, Acta Mater., "Enhanced plasticity in a bulk amorphous matrix composite: macroscopic and microscopic viewpoint studies" 53 (2005) 129-139 https://doi.org/10.1016/j.actamat.2004.09.010