• Title/Summary/Keyword: liquid alloy

Search Result 398, Processing Time 0.039 seconds

A Study of Carbide Thapping and Growth in the Directional Solidification of MAR-M247 LC Super alloy (Ni기 초내열합금의 일방향 응고에서 탄화물의 Trapping과 성장 거동)

  • Lee, Jae-Hyeon;Jin, Geon;Lee, Yong-Tae;Choe, Seung-Ju
    • 연구논문집
    • /
    • s.26
    • /
    • pp.95-102
    • /
    • 1996
  • The carbide growth behavior of MAR-M247 LC alloy was investigated by directional solidification and quench method. The carbide volume fraction, trapping and growth behavior were correlated with the growth rate. It was found that the carbide volume fraction decreases at slower growth rate. This decreasing was caused by lower solid-liquid interface trapping ability at the slower growth rate.

  • PDF

Innovative Approach to Sintering Aluminum and Aluminum Alloy Powders for Rapid Manufacturing Applications

  • Liu, Jianxin;Kuhn, Howard A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.246-247
    • /
    • 2006
  • A new approach to sintering loose packed, coarse aluminum alloy powder to full or near full density is presented. A controlled amount of water vapor is introduced into the sintering atmosphere, which disru pts the oxide film and allows metallurgical contact between particles. In addition, supersolidus liquid phase sintering is used to sinter the part to full density. Since the method is particularly applicable to uncompacted powders, it is potentially useful for sintering aluminum powder preforms manufactured by 3DPrinting and powder injection molding.

  • PDF

Microstructure and Tensile Property of Rapidly Solidified Al-Be alloy (급속응고한 Al-Be합금의 미세조직 및 인장특성)

  • Lee, In-Woo;Park, Hyun-Ho;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.459-468
    • /
    • 1995
  • For high performance aerospace structures, the properties of highest priority are low density, high strength, and high stiffness(modulus of elasticity). Addition of beryllium decrease the density of the aluminum alloy and increase the strength and the stiffness of the alloy. However it is very difficult to produce the Al-Be alloy having useful engineering properties by conventional ingot casting, because of the extremely limited solid solubility of beryllium in aluminum. So, rapid solidification processing is necessary to obtain extended solid solubility. In this study, rapidly solidified Al-6 at% Be alloy were prepared by twin roll melt spinning process and single roll melt spinning process. Twin roll melt spun ribbons were extruded at $450^{\circ}C$ with reduction in area of 25 : 1 after vacuum hot pressing at $550^{\circ}C and 375^{\circ}C$. The microstructure of melt spun ribbon exhibited a refined cellular microstructure with dispersed Be particles. As advance velocity of liquid/solid interface increase, the morphology of Be particle vary from rod-like type to spherical type and the crystal structure of Be particle from HCP to BCC. These microstructural characteristics of rapidly solidified Al-6at.%Be alloy were described on the basis of metastable phase diagram proposed by Perepezko and Boettinger. The extruded ribbon consisted of recrystallized grains dispersed with Be particles and exhibited improved tensile property compared with that of extruded ingot.

  • PDF

The Effect of Re addition and Solidification Rate on the Directional Solidification Behavior of Ni-Al Alloy (Ni-Al 합금의 일방향 응고 거동에 미치는 Re 및 응고속도의 영향)

  • Lee, Man-Gil;Yoo, Young-Soo;Jo, Chang-Yong;Lee, Je-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.243-249
    • /
    • 2007
  • The effect of Re addition and solidification rate on the directional solidification behavior of Ni-Al model alloy has been investigated. Directional solidification (DS) were carried out using the modified Bridgman furnace with various solidification rates. The solid/liquid interface during directional solidification was preserved by quenching the specimen after the desired volume fraction of original liquid was solidified. The equilibrium partition coefficients of Al and Re Were estimated by measuring the compositions at the quenched solid/liquid interface. Then, the effect of Re addition on the elemental segregation behavior was carefully analyzed. The differential scanning calorimetry results showed that the Re addition results in increased ${\gamma}'$ solvus and freezing range of the alloy. It was also shown that the primary dendrite arm spacing gradually decreases with increasing the Re content, while the secondary dendrite arm spacing appears to be independent on the Re content. The compositional analyses clearly revealed that the segregation of Al increased with increasing the Re content and solidification rate, while that of Re was found to be independent on the solidification rate in the range of $10{\sim}100{\mu}m/s$ due to its sluggish diffusion rate in the Ni solid solution.

Microfracture Behavior of Metallic-Continuous-Fiber-Reinforced Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 금속 연속섬유강화 비정질 복합재료의 미세파괴거동)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.524-537
    • /
    • 2008
  • Zr-based amorphous alloy matrix composites reinforced with metallic continuous fibers were fabricated by liquid pressing process, and their fracture properties were investigated by directly observing microfracture process using an in situ loading stage installed inside a scanning electron microscope chamber. About 60 vol.% of metallic fibers were homogeneously distributed inside the amorphous matrix. Apparent fracture toughness of the stainless-steel- and tungsten-fiber-reinforced composites was lower than that of monolithic amorphous alloy, while that of the Ta-fiber-reinforced composite was higher. According to the microfracture observation, shear bands or cracks were initiated at the amorphous matrix, and the propagation of the initiated shear bands or cracks was effectively blocked by fibers, thereby resulting in stable crack growth which could be confirmed by the fracture resistance curve (R-curve) behavior. This increase in fracture resistance with increasing crack length improved fracture properties of the fiber-reinforced composites, and could be explained by mechanisms of formation of multiple shear bands or multiple cracks at the amorphous matrix and blocking of crack or shear band propagation and multiple necking at metallic fibers.

Recent Progress in Nanoparticle Synthesis via Liquid Medium Sputtering and its Applications

  • Cha, In Young;Yoo, Sung Jong;Jang, Jong Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-26
    • /
    • 2016
  • Nanoparticles (NPs), which have been investigated intensively as electrocatalysts, are usually synthesized by chemical methods that allow precise size and shape control. However, it is difficult to control the components and compositions of alloy NPs. On the other hand, the conventional physical method, sputtering with solid substrates, allows for facile composition control but size control is difficult. Recently, “liquid medium sputtering” has been suggested as an alternative method that is capable of combining the advantages of the chemical and conventional physical methods. In this review, we will discuss NP synthesis via the liquid medium sputtering technique using ionic liquid and low-volatile polymer media. In addition, potential applications of the technique, including the generation of oxygen reduction reaction electrocatalysts, will be discussed.

The Effect of Test Peace Size on Liquid Segregation in deformation Behavior in Mushy state Material (고액공존재료의 변형거동에서 재료의 크기가 액상편석에 미치는 영향)

  • 윤성원;서판기;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.167-170
    • /
    • 1997
  • For the optimal net shape forging of semi-solid materials (SSM), it is important to predict the deformation for variation of strain rate. It should be necessruy to conduct a formation of stress-strain curve in semi-solid alloys for analysis of the thixoforming process. Particularly, important problem to application of computer aided engineering in SSM processing is to prevent a segregation of liquid component during compression process. The liquid segregation is studied as multistage change of the strain rate and test piece size to prevent the liquid segregation during the compression process. The compression test for semi-solid aluminium alloy with a controlled solid fraction is performed by dynamic material test system with a furnace. Moreover morphology of structure and fraction of pore are investigated through compression test.

  • PDF

Estimation of surface tension of liquid alloys under different oxygen partial pressure

  • Min, Sun-Gi;Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.101-101
    • /
    • 2008
  • The effect of oxygen partial pressure on the surface tension data of liquid alloys was investigated by means of comparing the calculated data and the measured one. Two binary alloy systems were chosen to observe the dependence of oxygen adsorption behavior on different oxygen partial pressures. It was found that the difference between the computed values and the experimental of the surface tension was within the range of maximum 10%.

  • PDF

Wear behaviors of HVOF spray coating of Co-alloy T800

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Park, Bong-Kyu;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • HVOF thermal spray coating of Co-alloy T800 is progressively replacing the classical hard coatings such as chrome plating because of the very toxic $Cr^{6+}$ ion known as carcinogen causing lung cancer. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied for the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$ are drastically reduced compared to those of non-coated surface of parent substrate Inconel 718. This study shows that the coating is recommendable for the durability improvement coatings on the surfaces vulnerable to frictional heat. The sliding surfaces are weared by the mixed mechanisms such as oxidative wear, abrasion by the sliding ball slurry erosion by the mixture of solid particles and small drops of the melts and semi-melts of the attrited particles cavitation by the relative motions among the coating, sliding ball, the melts and semi-melts. and corrosive wear. The oxide particles and the melts and semi-melts play roles as solid and liquid lubricant reducing the wear and friction coefficient.