• Title/Summary/Keyword: liquid $SiO_2$

Search Result 346, Processing Time 0.03 seconds

Investigation on Lead-Borosilicate Glass Based Dielectrics for LTCC (Lead-Borosilicate Glass계 LTCC용 유전체에 대한 고찰)

  • Yoon, Sang-Ok;Oh, Chang-Yong;Kim, Kwan-Soo;Jo, Tae-Hyun;Shim, Sang-Heung;Park, Jong-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.338-343
    • /
    • 2006
  • The effects of lead-borosilicate glass frits on the sintering behavior and microwave dielectric properties of ceramic-glass composites were investigated as functions of glass composition of glass addition ($10{\sim}50vol%$), softening point (Ts) of the glass, and sintering temperature of the composites ($500{\sim}900^{\circ}C$ for 2 h). The addition of 50 vol% glass ensured successful sintering below $900^{\circ}C$. Sintering characteristics of the composites were well described in terms of Ts. PbO addition in to the glass enhanced the reaction with $Al_{2}O_3$ to form liquid phase and $PbAl_{2}Si_{2}O_8$, which was responsible to lower Ts. Dielectric constant(${\epsilon}_r$), $Q{\times}f_0$ and temperature coefficient of resonant frequency (${\tau}_f$) of the composite with 50 vol% glass contents ($B_{2}O_{3}:PbO:SiO_{2}:CaO:Al_{2}O_3$ = 5:40:45:5:5) demonstrated 8.5, 6,000 GHz, $-70\;ppm/^{\circ}C$, respectively, which is applicable to substrate requiring a low dielectric constant. When the same glass composition was applied sinter $MgTiO_3\;and\;TiO_2,\;at\;900^{\circ}C$ (50 vol% glass in total), the properties were 23.8, 4,000 GHz, $-65ppm/^{\circ}C$ and 31.1, 2,500 GHz, $+80ppm/^{\circ}C$ respectively, which is applicable to filter requiring an intermidiate dielectric constant.

The Synthesis of Vanadium-Doped Forsterite by the $H_2O_2$-Assisted Sol-Gel Method, and the Growth of Single Crystals of Vanadium-Doped Forsterite by the Floating Zone Method

  • 박동곤;Mikio Higuchi;Rudiger Dieckmann;James M. Burlitch
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.927-933
    • /
    • 1998
  • Polycrystalline powder of vanadium-doped forsterite (Vδ $Mg_2SiO_4$) was synthesized by the $H_2O_2$-assisted sol-gel method. The vanadium dopant, which was added as VO$(OMe)_3$ in methanol, went through several redox reactions as the sol-gel reaction proceeded. Upon adding VO$(OMe)_3$ to a mixture of $Mg(OMe)_2$ and Si$(OEt)_4$ in methanol, V(V) reduced to V(IV). As hydrolysis reaction proceeded, the V(IV) oxidized all back to V(V). Apparently, some of the V(V) reduced to V(IV) during subsequent gelation by condensation reaction. The V(IV) remained even after heat treatment of the gel in highly oxidizing atmosphere. The crystallization of the xerogel around 880 ℃ readily produced single phase forsterite without any minor phase. Using the polycrystalline powder as feeding stock, single crystals of vanadium-doped forsterite were grown by the floating zone method in oxidizing or reducing atmosphere. The doping was limited in low level because of the high partitioning of the vanadium in liquid phase during melting. The greenish single crystal absorbed visible light of 700∼1100 nm. But, no emission was obtained in near infrared range.

Antimicrobial Effect of Buffered Sodium Citrate (BSC) on Foodborne Pathogens in Liquid Media and Ground Beef

  • Ryu, Si-Hyun;Fung, Daniel -Y. C.
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.3
    • /
    • pp.239-243
    • /
    • 2010
  • The antimicrobial effects of a commercially available, buffered sodium citrate (BSC) were evaluated for the reduction of total aerobic bacteria count, Salmonella Typhimurium, Escherichia coli O157:H7, Listeria monocytogenes and Staphylococcus aureus in a liquid medium and ground beef. BSC at 0, 1, 2 and 4.8% (wt/vol) or 0, 3, and 4.8% (wt/wt) was mixed into inoculated brain heart infusion (BHI) broth and ground beef (80% lean), respectively. BSC at concentrations of 1 and 2% did not inhibit growth of the pathogens tested in BHI broth. E. coli O157:H7 in BHI broth with 4.8% BSC was significantly reduced (p<0.05) by 3~4 log CFU/mL compared with the control for up to 4 days. At 4.8%, BSC treatment of ground beef most significantly reduced (p<0.05) total aerobic count and E. coli O157:H7 by 2.1 and 2.0 log CFU/g, respectively. This study indicates that the legally allowable level of 1.3% (wt/wt) BSC is not effective for reducing the pathogens tested in ground beef stored at $7^{\circ}C$.

Fabrication of SnO2-based All-solid-state Transmittance Variation Devices (SnO2 기반 고체상의 투과도 가변 소자 제조)

  • Shin, Dongkyun;Seo, Yuseok;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.23-29
    • /
    • 2020
  • Electrochromic (EC) device is an element whose transmittance is changed by electrical energy. Coloring and decoloring states can be easily controlled and thus used in buildings and automobiles for energy saving. There exist several types of EC devices; EC using electrolytes, polymer dispersed liquid crystal (PDLC), and suspended particle device (SPD) using polarized molecules. However, these devices involve solutions such as electrolytes and liquid crystals, limiting their applications in high temperature environments. In this study, we have studied all-solid-state EC device based on Tin(IV) oxide (SnO2). A coloring phase is achieved when electrons are accumulated in the ultraviolet (UV)-treated SnO2 layer, whereas a decoloring mode is obtained when electrons are empty there. The UV treatment of SnO2 layer brings in a number of localized states in the bandgap, which traps electrons near the conduction band. The SnO2-based EC device shows a transmittance of 70.7% in the decoloring mode and 41% in the coloring mode at a voltage of 2.5 V. We have achieved a transmittance change as large as 29.7% at the wavelength of 550 nm. It also exhibits fast and stable driving characteristics, which have been demonstrated by the cyclic experiments of coloration and decoloration. It has also showed the memory effects induced by the insulating layer of titanium dioxide (TiO2) and silicone (Si).

Effect of YAG on the Fracture Toughness and Electrical Conductivity of $\beta-SIC-ZrB_{2}$ Composites ($\beta-SIC-ZrB_{2}$복합체의 파괴인성과 전기전도도에 미치는 YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Hwang, Chul;Park, Mi-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.839-842
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC-ZrB$_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_2$O$_3$+Y$_2$O$_3$. Phase analysis of composites by XRD revelled $\alpha$ -SiC(6H), ZrB$_2$, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ). Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 6.3MPa.m$^{1}$2/ for composites added with 24wt% $Al_2$O$_3$+Y$_2$O$_3$additives at room temperature. The resistance temperature coefficient respectively showed the value of 2.46$\times$10$^{-3}$ , 2.47$\times$10$^{-3}$ , 2.52$\times$ 10$^{-3}$ $^{\circ}C$ for composite added with 16, 20, 24wt% A1$_2$O$_3$+Y$_2$O$_3$additives. The electircal resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to 90$0^{\circ}C$.

  • PDF

MOF-based membrane encapsulated ZnO nanowires for H2 selectivity (MOF 기반 멤브레인 기능화된 ZnO 나노선의 수소 가스 선택성)

  • Kim, Jae-Hun;Lee, Jae-Hyeong;Kim, Jin-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.106-106
    • /
    • 2017
  • 가스센서는 사내 및 산업 환경에서의 유독성 또는 폭발성 가스 검출, 환경 모니터링, 질병 진단 등 매우 다양한 응용분야에서 큰 관심을 가지고 있다. 반도체 금속산화물(SMOs) 기반의 센서 분야에서는 이들의 감도 및 선택성을 향상시키기 위해 많은 노력을 기울이고 있다. 이는 센서의 선택성을 부여하게 되면 다양한 가스들이 존재하는 환경에서도 검출자가 원하는 가스만의 응답을 얻을 수 있기 때문이다. 본 연구에서는 MOF(Metal-Organic Framwork) 기반 멤브레인으로 ZIF-8(Zeolitic Imidazolate Frameworks 구조들 중 하나) 멤브레인 쉘 층을 이용하여 ZnO 나노선에 형성하였다. ZnO 나노선은 VLS공정 (Vapor-Liquid-Solid)을 이용하여 패턴된 전극을 갖는 $SiO_2$-grown Si 웨이퍼 상에 성장되었고, 성장된 ZnO 나노선은 2-methyl imidazole과 methanol이 포함된 고용체에 넣고 폐쇄된 압력용기 속에서 가열시켜 얻게 된다. 이렇게 얻어진 ZIF-8@ZnO 나노선의 ZIF-8 멤브레인은 분자 체 구조(molecular sieving structure)를 갖게 되며, 이들의 pore 크기는 약 $3.4{\AA}$을 갖는다. 따라서 이보다 더 큰 동적 직경을(kinetic diameter) 갖는 가스 종은 이 멤브레인을 통과할 수 없음을 나타내므로 제작된 시편은 $H_2$(kinetic diameter : $2.89{\AA}$), $C_7H_8$(kinetic diameter : $5.92{\AA}$), 그리고 $C_6H_6$(kinetic diameter : $5.27{\AA}$) 가스들을 각각 사용함으로써 ZIF-8@ZnO 나노선의 센서 특성을 조사했으며, 보다 정확한 비교를 위해 순수한 ZnO 나노선 역시 동일한 조건에서 측정되었다. 결과를 통해, 수소 가스를 제외한 다른 가스들에 대해서는 반응을 하지 않고, 오직 수소 가스에 대해서만 반응을 나타냈으며, 순수 ZnO 나노선의 수소 감응도보다 낮은 감응도를 나타내었다. 이는 멤브레인 쉘 층을 형성함으로써 ZnO 나노선의 표면적이 감소해 가스 분자와의 접촉점을 감소시키기 때문이라고 판단된다. 이와 같은 MOF 멤브레인의 캡슐화 전략은 가스센서뿐 아니라 바이오 센서 및 광촉매 등과 같은 이온 선택성을 필요로 하는 다양한 응용분야에 적용될 수 있을 것으로 기대된다.

  • PDF

Effect of Substrate Temperature and Growth Duration on Palladium Oxide Nanostructures (팔라듐 옥사이드 나노구조물의 성장에서 기판 온도와 성장 시간의 효과)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2019
  • Palladium (Pd) is widely used as a catalyst and noxious gas sensing materials. Especially, various researches of Pd based hydrogen gas sensor have been studied due to the noble property, Pd can be adsorbed hydrogen up to 900 times its own volume. In this study, palladium oxide (PdO) nanostructures were grown on Si substrate ($SiO_2(300nm)/Si$) for 3 to 5 hours at $230^{\circ}C{\sim}440^{\circ}C$ using thermal chemical vapor deposition system. Pd powder (source material) was vaporized at $950^{\circ}C$ and high purity Ar gas (carrier gas) was flown with the 200 sccm. The surface morphology of as-grown PdO nanostructures were characterized by field-emission scanning electron microscopy(FE-SEM). The crystallographic properties were confirmed by Raman spectroscopy. As the results, the as-grown nanostructures exhibit PdO phase. The nano-cube structures of PdO were synthesized at specific substrate temperatures and specific growth duration. Especially, PdO nano-cube structrures were uniformly grown at $370^{\circ}C$ for growth duration of 5 hours. The PdO nano-cube structures are attributed to vapor-liquid-solid process. The nano-cube structures of PdO on graphene nanosheet can be applied to fabricate of high sensitivity hydrogen gas sensor.

Microstructure and Magnetic Properties of Til-xCoxO2 Diluted Magnetic Semiconductor Thin Films with Various Co Concentrations by Metal Organic Chemical Vapor Deposition (유기 금속 화학 기상 증착법으로 제조된 자성반도체 Til-xCoxO2 박막의 Co 조성 변화에 따른 미세구조 및 자기적 특성)

  • Seong, Nak-Jin;Oh, Young-Nam;Cho, Chae-Ryong;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.737-741
    • /
    • 2003
  • Polycrystalline $Ti_{l-x}$ $Co_{x}$ $O_2$thin films on $SiO_2$ (200 nm)/Si (100) substrates were prepared using liquid-delivery metalorganic chemical vapor deposition. Microstructures and ferromagnetic properties were investigated as a function of doped Co concentration. Ferromagnetic behaviors of polycrystalline films were observed at room temperature, and the magnetic and structural properties strongly depended on the Co distribution, which varied widely with doped Co concentration. The annealed $Ti_{l-x}$ $Co_{x}$ $O_2$thin films with $x\leq$0.05 showed a homogeneous structure without any clusters, and pure ferromagnetic properties of thin films are only attributed to the X$l-x_{l-x}$ $Co_{x}$X$O_2$phases. On the other hand, in case of thin films above x = 0.05, Co-rich clusters formed in a homogeneous $Ti_{l-x}$ $Co_{x}$ $O_2$phase, and the overall ferromagnetic (FM) properties depended on both FMTCO and FMCo. Co-rich clusters with about 10-150 nm size decreased the value of Mr (the remanent magnetization) and increased the saturation magnetic field.

Fabrication of Mullite Short Fibers from Coal Fly Ash (석탄회로부터 뮬라이트 단섬유의 제조)

  • Kim, Byung-Moon;Park, Young-Min;Lyu, Seung-Woo;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.235-241
    • /
    • 2006
  • Mullite short fibers have been fabricated by adapting the Kneading-Drying-Calcination (KDC) process and characterized. The effect of the addition of foaming agent and calcination temperature on the formation of mullite fibers from coal fly ash, was examined. In the present work, ammonium alum $NH_4Al(SO_4)_2\;12H_2O$ synthesized trom coal fly ash and sodium phosphate $Na_2HPO_4\;2H_2O$ were used as foaming agents. After calcination at $1300^{\circ}C$ for 10 h and then etching with 20% HF solution at $50^{\circ}C$ for 5 h using a microwave heating source, the alumina-deficient $(AI_2O_3/SiO_2$ = 1.13, molar ratio) orthorhombic mullite fibers with a width of ${\sim}0.8mm$ (aspect ratio >30), were prepared from the coal fly ash with $AI_2O_3/SiO_2$ = 0.32, molar ratio by the addition of $NH_4AI(SO_4)_2\;12H_2O$, and with further addition of 2 wt% sodium phosphate. The excessive addition of sodium phosphate rather decreased the formation of mullite fibers, possibly due to the large amount of liquid phase prior to mullitization reaction.

Growth and Quality Changes of Creeping Bentgrass by Application of Liquid Fertilizer Containing Silicate (규산 함유 액상비료 시비에 따른 크리핑 벤트그래스의 생육과 품질 변화)

  • Kim, Young-Sun;Lee, Chang-Eun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.170-176
    • /
    • 2016
  • Superintendents have used a silicate fertilizer to improve a resistance of turfgrass against several diseases, drought damage and wear stress. This study was conducted to evaluate the effect of liquid fertilizer containing silicate (LFSi) on changes of turfgrass quality and growth by investigating visual quality, chlorophyll content-chlorophyll a, chlorophyll b, and total chlorophyll, root length, shoot length, dry weight of clipping, and nutrient content in leaves tissue. Treatments were designed as follows; control fertilizer (CF), SiF-1 (CF + $1ml\;m^{-2}$ LFSi), SiF-2 (CF + $2ml\;m^{-2}$ LFSi), and SiF-3 (CF + $4ml\;m^{-2}$ LFSi). As compared with CF, soil chemical properties, visual turfgrass quality, chlorophyll content, and dry weight of clipping of LFSi treatments were not significantly. Contrastingly, shoot density, root length, and the content of nitrogen or potassium were increased by application of LFSi. The content of Si in the tissue was positively correlated with potassium content or shoot length, and similarly shoot density positively with chlorophyll content or visual quality, respectively. These results suggested that the application of LFSi improved the turfgrass quality by increasing shoot density or K content in leaf tissue of creeping bentgrass.