• Title/Summary/Keyword: liquid $SiO_2$

Search Result 346, Processing Time 0.036 seconds

Effect of Additive Composition on Mechanical Properties of Silicon Carbide Sintered with Aluminum Nitride and Erbium Oxide

  • Lee, Sung-Hee;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • The effect of additive composition, using AlN and $Er_{2}O_{3}$ as sintering additives, on the mechanical properties of liquid-phase-sintered, and subsequently annealed SiC ceramics was investigated. The microstructures developed were quantitatively analyzed by image analysis. The average thickness of SiC grains increased with increasing the $Er_{2}O_{3}/(AlN + Er_{2}O_{3})$ ratio in the additives whereas the aspect ratio decreased with increasing the ratio. The mechanical properties versus $Er_{2}O_{3}/(AlN + Er_{2}O_{3})$ ratio curve had a maximum; i.e., there was a small composition range at which optimum mechanical properties were realized. The best results were obtained when the ratio ranged from 0.4 to 0.6. The flexural strength and fracture toughness of the SiC ceramics were $550\~650\;MPa$ and $5.5\~6.5$ MPa${\cdot}m^{1/2}$, respectively.

Effect of Annealing on Properties of SiC-$TiB_2$ Composites (SiC-$TB_2$ 복합체의 특성에 미치는 annealing의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Kim, Young-Bek
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1289-1290
    • /
    • 2007
  • The composites were fabricated 61Vo.% ${\beta}$-SiC and 39Vol.% $TiB_2$ powders with the liquid forming additives of 12wt% $Al_{2}O_{3}+Y_{2}O_{3}$ as a sintering aid by pressure or pressureless annealing at $1650^{\circ}C$ for 4 hours. The present study investigated the influence of annealed sintering on the microstructure and mechanical of SiC-$TiB_2$ electroconductmive ceramic composites. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the SiC-$TiB_2$ electroconductive ceramic composites. Phase analysis of SiC-$TiB_2$ composites by XRD revealed mostly of ${\alpha}$-SiC(6H), $TiB_2$, and In Situ YAG($Al_{5}Y_{3}O_{12}$). The relative density, the flexural strength, the Young's modulus showed the highest value of 86.69[%], 136.43[MPa], 52.82[GPa] for pressure annealed SiC-$TiB_2$ ceramic composites.

  • PDF

IPS property using ion beam irradiation on SiOF surfaces (SiO 기판에 이온빔 조사를 통해서 제조한 IPS Cell의 특성에 관한 연구)

  • Han, Jeong-Min;Seo, Dae-Shik
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.54-57
    • /
    • 2012
  • Nematic liquid crystal (NLC) alignment effects on SiOF layers via ion-beam (IB) irradiation for four types of incident energy were successfully studied. The effect of fluorine addition on silicon oxide film properties as a function of $SiOF_4/O_2$ gas flow ration was investigated. The SiOF thin film exhibits good chemical and the thermal stability of the SiOF thin film were sustained as function of the NLC alignment until $200^{\circ}C$ Also, the response-time characteristics of aligned LCD based on SiOF film were studied.

Properties of the $\beta$-SiC+39vol.%$ZrB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3$를 첨가한 $\beta$-SiC+39vol.%$ZrB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Jin, Hong-Bum;Park, Gi-Yub;Yea, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1913-1915
    • /
    • 1999
  • The ${\beta}-SiC+ZrB_2$ ceramic composites were hot-press sintered and annealed by adding 1, 2, 3wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at $1950^{\circ}C$ for 4h. In this microstructures, no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 90.79% of the theoretical density and the porosity decreased with increasing $Al_2O_3+Y_2O_3$ contents. Phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H, 4H), $ZrB_2$, $Al_2O_3$ and $\beta$-SiC(15R). Flexural strength showed the highest of 315.46MPa for composites added with 3wt% $Al_2O_3+Y_2O_3$ additives at room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed the highest of $5.5328MPa{\cdot}m^{1/2}$ for composites added with 2wt% $Al_2O_3+Y_2O_3$ additives at room temperature.

  • PDF

Effect of Sintering Variables on the Microstructure and Mechanical Properties of the Gas Pressure Sintered $Si_3N_4$ ($Si_3N_4$ 가스압 소결체의 미세조직과 기계적 성질에 미치는 공정변수의 영향)

  • 박동수;김해두;정중희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.129-136
    • /
    • 1994
  • Si3N4 with 6w/o Y2O3 and 1.5w/o Al2O3 has been gas pressure sintered and its densification behavior and the effect of the sintering variables on the microstructure and mechanical properties were investigated. Densification rate was higher at temperature below 1775$^{\circ}C$ and between 187$0^{\circ}C$ and 195$0^{\circ}C$ than between 1775$^{\circ}C$ and 187$0^{\circ}C$. The faster densification at temperature between 187$0^{\circ}C$ and 195$0^{\circ}C$ was thought to be due to the increased amount of liquid phase resulting from the increased amount of Si3N4 dissolving in the liquid. $\beta$-Si3N4 and Y-disilicate at temperatures below 1775$^{\circ}C$, and only $\beta$-Si3N4 at 187$0^{\circ}C$ and above were detected by XRD analysis. Three different two-step schedules were employed to obtain sintered body with above 99% theoretical density and to investigate the effect of the sintering variables on the density, the microstructure and the mechanical properties of the sintered body. The sintered density did not change with the heating rate, and the microstructure became coarser as the temperature increased. The strength decreased with the width of $\beta$-Si3N4 grain, while the fracture toughness increased with the square root of it. A ceramic cutting tool made of the sintered body showed an uniform flank wear after the cutting test.

  • PDF

Effeet of Al2O3, MgO and SiO2 on Sintering and Hydration Behaviors of CaO Ceramics

  • Kim, Do-Kyung;Cho, Churl-Hee;Goo, Bong-Jin;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.528-534
    • /
    • 2002
  • CaO ceramics were prepared by conventional sintering process and their hydration behaviors were evaluated by measuring weight increment on saturated water vapor pressure at ambient temperature. CaCO$_3$ and limestone were used as CaO source materials and $Al_2$O$_3$, MgO and SiO$_2$ were added as sintering agents. $Al_2$O$_3$ was a liquid phase sintering agent to increase densification and grain growth rates, whereas MgO and SiO$_2$, densification and grain growth inhibitors. Regardless of composition, all of the prepared CaO ceramics showed the improved hydration resistance as bulk density increased. Especially, when bulk density was more than 3.0 g/㎤, there was no weight increment after 120 h of hydration. Therefore, to decrease contact area between CaO and water vapor by increasing bulk density with the $Al_2$O$_3$ sintering additive was effective for the improvement of CaO hydration resistance.

Liquid Crystal Alignment Effects on SiOx Thin Film by Electron Beam Evaporation Method (전자빔증착법을 통한 SiOx 박막의 액정 배향 효과)

  • Kang, Hyung-ku;Han, Jin-Woo;Kang, Soo-Hee;Kim, Jong-Hwan;Kim, Young-Hwan;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1024-1027
    • /
    • 2005
  • By using $45^{\circ}$ obliqued evaporation method with electron beam system, uniformly vertical liquid crystal (LC) alignment was achieved. And a high pretilt angles of about $2.5^{\circ}$ were measured. Also, it was verified that there are no variations of pretilt angle as a function of $SiO_x$ thin film thickness 20 nm and 50 nm. A good LC alignment states were observed at annealing temperature of $250^{\circ}C$. Consequently, the high pretilt angle and the good thermal stability of LC alignment by $45^{\circ}$ obliqued electron beam evaporation method on the $SiO_x$ thin film can be achieved.

Alteration of Physical Properties of Nanoparticle Embedded liquid Crystal Causing the Enhancement of the Performance of LCDs

  • Kobayashi, Shunsuke;Kineri, Tohru;Takatoh, Kohki;Akimoto, Mitsuhiro;Hoshi, Hajime;Nishida, Naoto;Toshima, Naoki;Sano, Satoru
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1473-1476
    • /
    • 2008
  • Doping the nanoparticles of Pd, p-$BaTiO_3$, $SiO_2$ and MgO into LCs alters their physical properties such as $K_{ii}$, $\Delta\varepsilon$, ${\Delta}n$, $\gamma_1$ and $T_{NI}$. Except for $K_{33}$, all these parameters decreases and thus bring the reduction of operating voltage and/or response times.

  • PDF

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Properties of the $\beta-SiC-TiB_2$ Composites with $Al_2O_3+Y_2O_3$ additives ($Al_2O_3+Y_2O_3를 첨가한 {\beta}-SiC-TiB_2$ 복합체의 특성)

  • Yim, Seung-Hyuk;Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.394-399
    • /
    • 2000
  • The mechanical and electrical properties of pressed and annealed $\beta-SiC-TiB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_2O_3+Y_2O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), TiB2, and (Al5Y3O12). Reaction between Al2O3 and $Y_2O_3$ formed YAG but the relative density decreased with increasing $Al_2O_3+Y_2O_3$ contents. The Flexural strength showed the value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives at room temperatures. Owing to crack deflection and crack bridging, the fracture toughness showed 6.2, 6.0 and 6.6 MPa.m1/2 for composites added with 4, 8 and 12 wt% Al2O3+Y2O3 additives respectively at room temperature. The resistance temperature coefficient showed the value of $3.6\times10^{-3},\; 2.9\times10^{-3}\; and\; 3.0\times10^{-3} /^{\circ}C$$^{\circ}C$ for composite added with 4, 8 and 12 wt% $Al_2O_3+Y_2O_3$additives respectively at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C\; to\; 700^{\circ}$.

  • PDF